162 resultados para Local electronic structures
Resumo:
The electronic structures of GaAs/Ga1-xAlxAs quantum wires (corrugated superlattices) grown on (311)-oriented substrates are studied in the framework of the effective-mass envelope-function method. The electron and hole subband structure and optical transition matrix elements are calculated. When x=1, the results are compared with experiments, and it is found that the direct transition becomes an indirect transition as the widths of well and barrier become smaller.
Resumo:
A theoretical study is presented of the lateral confinement potential (CP) in the very narrow mesa channels fabricated in the conventional two-dimensional (2D) electron gas in GaAs-AlxGa1-xAs heterostructures. The ID electronic structures are calculated in the framework of the confinement potential: V(x) = m* omega0(2)x2/2 for Absolute value of x
Resumo:
Within the framework of the single-band effective-mass envelope-function theory, the effect of electric field on the electronic structures of pyramidal quantum dot is investigated. Taking the Coulomb interaction between the heavy holes and electron into account, the quantum confined Stark shift of the exciton as functions of the strength and direction of applied electric field and the size of the quantum dot are obtained. An interesting asymmetry of Stark shifts around the zero field is found. (C) 1997 Elsevier Science Ltd.
Resumo:
By using the recently developed exact effective-mass envelope-function theory, the electronic structures of InAs/GaAs strained superlattices grown on GaAs (100) oriented substrates are studied. The electron and hole subband structures, distribution of electrons and holes along the growth direction, optical transition matrix elements, exciton states, and absorption spectra are calculated. In our calculations, the effects due to the different effective masses of electrons and holes in different materials and the strain are included. Our theoretical results are in agreement with the available experimental data.
Resumo:
The valence hole subbands, TE and TM mode optical gains, transparency carrier density, and radiative current density of the zinc-blende GaN/Ga0.85Al0.15N strained quantum well (100 Angstrom well width) have been investigated using a 6 X 6 Hamiltonian model including the heavy hole, Light hole, and spin-orbit split-off bands. At the k = 0 point, it is found that the light hole strongly couples with the spin-orbit split-off hole, resulting in the so+lh hybrid states. The heavy hole does not couple with the light hole and the spin-orbit split-off hole. Optical transitions between the valence subbands and the conduction subbands obey the Delta n=0 selection rule. At the k not equal 0 points, there is strong band mixing among the heavy hole, light hole, and spin-orbit split-off hole. The optical transitions do not obey the Delta n=0 selection rule. The compressive strain in the GaN well region increases the energy separation between the so1+lh1 energy level and the hh1 energy level. Consequently, the compressive strain enhances the TE mode optical gain, and strongly depresses the TM mode optical gain. Even when the carrier density is as large as 10(19) cm(-3), there is no positive TM mode optical gain. The TE mode optical gain spectrum has a peak at around 3.26 eV. The transparency carrier density is 6.5 X 10(18) cm(-3), which is larger than that of GaAs quantum well. The compressive strain overall reduces the transparency carrier density. The J(rad) is 0.53 kA/cm(2) for the zero optical gain. The results obtained in this work will be useful in designing quantum well GaN laser diodes and detectors. (C) 1996 American Institute of Physics.
Resumo:
CdSe nanoclusters overcoated with CdS shell were prepared with macapoacetic acid as stabilizer. The optical properties of CdSe nanoclusters and the influence of CdS shell on the electronic structures of CdSe cores were studied by optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies. Based on PL and PLE results and the theoretical calculation on fine structure of bandedge exciton, a model of formation of excimer within the small clusters was proposed to explain the large Stokes shift of luminescence from absorption edge observed in PL results. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We realized ambipolar transport behavior in field-effect transistors by using p-p isotype heterojunction films as active layers, which consisted of two p-type semiconductor materials, 2, 2'; 7', 2 ''-terphenanthrenyl (Ph3) and vanadyl-phthalocyanine (VOPc). The ambipolar charge transport was attributed to the interfacial electronic structure of Ph3-VOPc isotype heterojunction, and electrons and holes were accumulated at both sides of the narrow band-gap VOPc and the wide band-gap Ph3, respectively, which were confirmed by the capacitance-voltage relationship of metal-oxide-semiconductor diodes. The accumulation thickness of carriers was also obtained by changing the heterojunction active layer thickness. Furthermore, the results indicate that the device performance is relative to interfacial electronic structures.
Resumo:
Many efforts have been devoted to exploring novel luminescent materials that do not contain expensive or toxic elements, or do not need mercury vapor plasma as the excitation source. In this paper, amorphous Al2O3 powder samples were prepared via the Pechini-type sol-gel process. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and electron paramagnetic resonance (EPR).
Resumo:
Quantum-chemistry methods were explored to investigate the electronic structures, injection and transport properties, absorption and phosphorescence mechanism of a series of blue-emitting Ir(III) complexes {[(F-2-ppy)(2)Ir(pta -X/pyN4)], where F-2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = phenyl(1); p-tolyl (2); 2,6-difluororophenyl (3); -CF3 (4), and pyN4 = pyridine-1,2,4-tetrazolate (5)}, which are used as emitters in organic light-emitting diodes (OLEDs). The mobility of hole and electron were studied computationally based on the Marcus theory. Calculations of Ionization potentials (IPs) and electron affinities (EAs) were used to evaluate the injection abilities of holes and electrons into these complexes.
Resumo:
The charge transport mechanism of oligo(p-phenylene ethynylene)s with lengths ranging from 0.98 to 5.11 nm was investigated using modified scanning tunneling microscopy break junction and conducting probe atomic force microscopy methods. The methods were based on observing the length dependence of molecular resistance at single molecule level and the current-voltage characteristics in a wide length distribution. An intrinsic transition from tunneling to hopping charge transport mechanism was observed near 2.75 nm. A new transitional zone was observed in the long length molecular wires compared to short ones. This was not a simple transition between direct tunneling and field emission, which may provide new insights into transport mechanism investigations. Theoretical calculations provided an essential explanation for these phenomena in terms of molecular electronic structures.
Resumo:
The electronic structure of CaCu3Mn4O12 and LaCu3Mn4O12 was investigated using a full-potential linearized augmented plane wave method within the Generalized Gradient Approximation (GGA). The ferrimagnetic and ferromagnetic states in these two compounds were investigated and the calculated spin magnetic moments were found to be close to the available experimental values. Calculations of spin polarization for these two oxides show that the ferrimagnetic configurations are the energetically favored ground state, which is consistent with experimental observation. The calculations predict that CaCu3Mn4O12 is a semiconductor and that LaCu3Mn4O12 is a half-metallic material. Furthermore, the relevance of these different electronic structures to the magnetoresistance is discussed.
Resumo:
This overview presents the recent progress in the area of endohedral metallofullerenes in the past several years. The important results have been summarized as follows: (1) Many metals including Group 3 metals, most of the lanthanide series elements, and Group 2 metals have been encapsulated into a fullerene cage to form mono-, di-, and trimetallofullerenes by using the arc-evaporation technique. (2) Some endohedral metallofullerenes such as Group 3 metals, most of the lanthanide series elements, Group 2 metals, and some of their isomers have been successfully isolated and purified by a two-step or several-step HPLC technique. By using high-temperature and high-pressure extraction with pyridine, Ln@C-80, Ln@C-82, and Ln2@C-80 for most rare-earth metals have been selectively extracted in high yield (about 1% of the saw soot) from fullerenes and other size metallofullerenes. (3) The endohedral nature of metallofullerenes such as Y@C-82, Sc2@C-84, and Sc@C-82 has been finally confirmed by synchrotron X-ray powder diffraction. The symmetries and the structures of metallofullerenes such as Ca@C-82(III), La-2@C-80(I-h), Sc-2@C-84(D-2d), and Sc-2@C-84(C-s) have been confirmed by NMR measurements. (Lb) The information on the electronic structures and properties of endohedral metallofullerenes has been obtained by various spectrometric means Such as EPR, W-vis-MR, XPS, CV. It is generally accepted that three-electron transfer is favorable when M = Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Lu but Sc, Eu, Sm, Yb, Tm, Ca, Sr, Ba prefer to donate two electrons to the fullerene cages. (5) Several chemical reactions of endohedral metallofullerenes have been reported in which reagents are disilacyclopropane, digermacyclopropane, diphenyldiazomethane, and trifluoroacetic acid. (6) Mass spectrometry provided the crucial evidence that led to the discovery of metallofullerenes in 1985 and has always played a key role in their identification and characterization, Ion-mobility measurements of gas-phase ions have obtained the information of structures and the formation mechanism of endohedral metallofullerenes. till Theoretical calculations on the endohedral metallofullerenes have made an important contribution to the studies on the symmetry of the cage, the position of metal atom(s) inside the cage, the number of electronic transfer between metal atom(s) and fullerene cage, etc. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Endohedral metallofullerenes Tb@C-2n were synthesized and extracted with high-yield by K-H carbon-are evaporation and an effective pyridine extraction technique at high-temperature high-pressure. Laser-desorption-ionization time-of-flight (LD-TOF) mass spectrometry, X-ray photoelectron spectroscopy (XPS), solid-state fluorescent emission spectroscopy and gas phase derivation reaction with the self-chemical ionization mass spectrometric ion system of vinyl acetate were employed for studying the electronic structures, fluorescent properties and gas phase reactivities of metallofullerenes Tb@C-2n. The experimental results suggest that endohedral metallofullerenes Tb@C-2n would have the approximate structures of Tb3+@C-2n(3-) similar to other metallofullerenes, good fluorescent emission properties and active reactivities in gas phase ion-molecular reactions.
Resumo:
Endohedral metallofullerenes Ce@C-82, Ce-2@C-80, Nd@C-82 and Nd-2@C-80 undergo gas phase ion/molecule reactions with the ion system from self-chemical ionization of vinyl acetate, and exohedral derivatives are thus generated, A new heterocycle is formed from metallofullerenes and a C2H3O+ cation, Endohedral metallofullerenes show much higher reactivities than empty fullerenes during the association and the charge and proton transfer processes, The strong electron-donating character of endohedral metallofullerenes is due to their unique super-atom-like electronic structures. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
The rare earth monophthalocyanine complexes, LnPcCl and LnPc(OAc)2 (Ln = Tb, Ho, Tm, Lu, Pc=Phthalocyanine, OAc = Acetate), were synthesized. The electronic structures of the complexes have been studied by means of XPS. The experimental results of binding energies for the complexes indicate that the bonds of the complexes have a certain covalent character depending on L-->Ln charge transfer. This L-->Ln charge transfer process of phythalocyanine complexes differs from that of crown ether complexes. Both coordination and substitution are included in the former case, but only coordination in the latter. Phthalocyanine ring is an electrophilic group and its electronegativity is large. So, the O1s binding energies of coordinating oxygen atoms of acetate in LnPc(OAc)2 are larger than those of Ln(OAc)3. The magnitude of valent charge delocalized from ligand onto metal atom is dependent on electronegativity, coordination number, valence state and so on. Because coordination number of Ln in LnPc(OAc)2 is larger than that in LnPcCl and electronegativity of Clin LnPcCl is larger than that of O in LnPc(OAc)2, the Ln4d5/2 binding energies of LnPc (OAc)2 are less than those of LnPcCl.