194 resultados para Intramolecular reactions
Resumo:
The potential of CO2-expanded liquid media for chemical reactions has been examined in this work, using cyclohexane as a solvent and Pd/C as a heterogeneous catalyst for hydrogenation of styrene, citral, and nitrobenzene with H-2. The rate of hydrogenation reactions is increased, and the product selectivity is altered in the CO2-expanded cyclohexane phase. In the hydrogenation of citral, the selectivity to citronellal decreases with CO2 pressure, which changes from similar to 80% in the neat cyclohexane to similar to 65% at 16 MPa.
Resumo:
A magnetic nanoparticle (MNP)-supported di(2-pyridyl)methanol palladium dichloride complex was prepared via click chemistry. The MNP-supported catalyst was evaluated in Suzuki coupling reaction in term of activity and recyclability in DMF. It was found to be highly efficient for Suzuki coupling reaction using aryl bromides as substrates and could be easily separated by an external magnet and reused in five consecutive runs without obvious loss of activity.
Resumo:
ECL of several amines containing different numbers of hydroxyl and amino groups was investigated. N-butyldiethanolamine is found to be more effective than 2-(dibutylamino)ethanol at gold and platinum electrodes, and is the most effective coreactant reported until now. Surprisingly, ECL intensities of monoamines, such as 2-(dibutylamino)ethanol and N-butyldiethanolamine, are much stronger than that of diamines including N,N,N',N'-tetrakis-(2-hydroxyethyl)-ethylenediamine and N,N,N',N'-tetrakis-(2-hydroxypropyl)ethlenediamine. The striking contrast between ECL signals of the investigated monoamines and diamines may result from more significant side reactions of diamines, such as the intramolecular side reactions between oxidative amine cation radicals and reductive amine free radicals.
Resumo:
The Heck reaction of iodobenzene and methyl acrylate was investigated with CO2-philic Pd complex catalysts having fluorous ponytails and the organic base triethylamine (Et3N) in the presence of CO2 under solventless conditions at 80 degrees C. The catalysts are not soluble in the organic phase in the absence Of CO2 and the reaction occurs in a solid-liquid biphasic system. When the organic liquid mixture is pressurized by CO2, CO2 is dissolved into the organic phase and this promotes the dissolution of the I'd complex catalysts. As a result, the Heck reaction occurs homogeneously in the organic phase, which enhances the rate of reaction. This positive effect Of CO2 pressurization competes with the negative effect that the reacting species are diluted by an increasing amount of CO2 molecules dissolved. Thus, the maximum conversion appears at a CO2 pressure of around 4 MPa under the present reaction conditions. The catalysts are separated in the solid granules by depressurization and are recyclable without loss of activity after washing with n-hexane and/or water.
Resumo:
Stoichiometric reactions between mesityl azide (MesN(3), Mes = 2,4,6-C6H2Me3) and amino-phosphine ligated rare-earth metal alkyl, LLn(CH2SiMe3) (2)(THF) (L = (2,6-C6H3Me2)NCH2C6H4P(C6H5)(2); Ln = Lu (1a), Sc (1b)), amide, LLu(NH(2,6-(C6H3Pr2)-Pr-i))(2)(THF) (2) and acetylide at room temperature gave the amino-phosphazide ligated rare-earth metal bis(triazenyl) complexes, [L(MesN(3))]Ln[(MesN(3))-(CH2SiMe3)](2) (Ln = Lu (3a); Sc (3b)), bis(amido) complex [L(MesN3)] Lu[NH(2,6-C6H3 Pr-i(2))](2) (4), and bis(alkynyl) complex (5) (L(MesN(3))Lu (C CPh)(2))(2), respectively. The triazenyl group in 3 coordinates to the metal ion in a rare eta(2)-mode via N-beta and N-gamma atoms, generating a triangular metallocycle. The amino-phosphazide ligand, L(MesN(3)), in 3, 4 and 5 chelates to the metal ion in a eta(3)-mode via N-alpha and N-gamma atoms. In the presence of excess phenylacetylene, complex 3a isomerized to 3', where the triazenyl group coordinates to the metal ion in a eta(3) mode via Na and Ng atoms.
Resumo:
An efficient one-pot synthesis of substituted quinolines from alpha-arylamino ketones in the presence of PBr3 in DMF has been developed. This general protocol provides a novel and facile access to substituted quinolines by sequential Vilsmeier-Haack reaction, intramolecular cyclization and aromatization reactions of alpha-arylamino ketones. PBr3 plays a dual role in the quinoline synthesis: as a key component of the Vilsmeier reagent (PBr3/DMF) and as a reducing reagent.
Resumo:
A facile and efficient synthesis Of Substituted pyridin-2(1H)-ones has been developed by the reaction of readily available 1-carbamoyl-]-[3-(dimethylamino)propenoyl]cyclopropanes with phosphoryl chloride or phosphorus tribromide in dichloromethane at room temperature.
Resumo:
In this paper, a novel template of carbon foam is used in building hierarchical structures of TiO2, CeO2, and ZrO2. They had multiscale morphologies, from nanowalls, nanoparticles to layer nanostructures. Oil a hundred-micron scale, the product was a sponge-like material constructed by nanowalls. On a hundred-nanometer scale, the electron microscope images showed that the nanowalls were porous and assembled by polycrystalline nanoparticles. Meanwhile, on one nanometer scale, many nanoparticles exhibited layer nanostructures with about 1.1 run of thickness and spacing. In mechanism section, the process analysis and characterizations suggested that the hierarchical structures were the combined result of two templates in a "one-pot" reaction. The mesoporous nanowalls were derived from carbon foams, while the layer nanostructures were the replicas of graphite sheets. The method has potential utilizations in preparation of various adsorbent and catalyst.
Resumo:
Intramolecular amide hydrolysis of N-methylmaleamic acid is revisited at the B3LYP/6-311G(2df,p)//B3LYP/6-31G(d,p)+ZVPE level, including solvent effects at the CPCM-B3LYP/6-311G(2df,p)//Onsager-B3LYP/6-31G(d,p)+ZPVE level. The concerted reaction mechanism is energetically favorable over stepwise reaction mechanisms in both the gas phase and solution. The calculated reaction barriers are significantly lower in solution than in the gas phase. In addition, it is concluded that the substituents of the four N-methylmaleamic acid derivatives considered herein have a significant effect on the gas-phase reaction barriers but a smaller, or little, effect on the barriers in solution.
Resumo:
Alkane elimination reactions of rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with the multidentate ligands HL1-4, afforded a series of new rare earth metal complexes. Yttrium, complex I supported by flexible amino-intino phenoxide ligand HL1 was isolated as homoleptic product. In the reaction of rigid phosphino-imino phenoxide ligand HL 2 with equintolar Ln(CH2SiMe3)3(THF)2, HL 2 was deprotonated by the metal alkyl and its imino C=N group was reduced to C-N by intramolecular alkylation, generating THF-solvated mono-alkyl complexes (2a: Ln = Y; 2b: Ln = Lu). The di-ligand chelated yttriurn complex 3 without alkyl moiety was isolated when the molar ratio of HL 2 to Y(CH,SiMe3)3(THF)2 increased to 2: 1. Reaction of steric phosphino beta-ketoiminato ligand HL 3 with equimolar Ln(CH2SiMe3)3(THF)2 afforded di-ligated mono-alkyl complexes (4a: Ln = Y; 4b: Ln = Lu) without occurrence of intramolecular alkylation or formation of homoleptic product. Treatment of tetradentate methoxy-amino phenol HL 4 with Y(CH2SiMe3)3(THF)2 afforded a monomeric yttrium bis-alkyl complex of THF-free. The resultant complexes were characterized by IR, NMR spectrum and X-ray diffraction analyses.All alkyl complexes exhibited high activity toward the ring-opening polymerization Of L-lactide to give isotactic polylactide with controllable molecular weight and narrow to moderate polydispersity.
Resumo:
The N,N-bidentate ligand 2-{(N-2,6-diisopropylphenyl)iminomethyl)}pyrrole (L-1) and the N,N,P-tridentate ligand 2-{(N-2-diphenylphosphinophenyl)iminomethyl)}pyrrole (L-2) have been prepared. Their reactions with homoleptic yttrium tris(alkyl) compound Y(CH2SiMe3)(3)(THF)(2) have been investigated. Treatment of Y(CH2SiMe3)(3)(THF)(2) with 1 equiv of L-1 generated a THF-solvated bimetallic (pyrrolylaldiminato)yttrium mono(alkyl) complex (1) of central symmetry. In this process, L-1 is deprotonated by metal alkyl and its imino CN group is reduced to C-N by intramolecular alkylation, generating dianionic species that bridge two yttrium alkyl units in a unique eta(5)/eta(1):kappa(1) mode. The pyrrolyl ring behaves as a heterocyclopentadienyl ligand. Reaction of Y(CH2SiMe3)(3)(THF)(2) with 2 equiv of L-1 afforded the monomeric bis(pyrrolylaldiminato)yttrium mono(alkyl) complex (2), selectively. Amination of 2 with 2,6-diisopropylaniline gave the corresponding yttrium amido complex (3). In 3 the pyrrolide ligand is monoanionic and bonds to the yttrium atom in a eta(1):kappa(1) mode. The homoleptic tris(eta(1):kappa(1)-pyrrolylaldiminato)yttrium complex (4) was isolated when the molar ratio of L-1 to Y(CH2SiMe3)(3)(THF)(2) increases to 3:1. Reaction of L-2 with equimolar Y(CH2SiMe3)(3)(THF)(2) afforded an asymmetric binuclear complex (5).
Resumo:
A facile and efficient one-pot synthesis of highly substituted pyridin-2(1H)-ones is developed via the Vilsmeier-Haack reaction of readily available 1-acetyl,1-carbamoyl cyclopropanes, and a mechanism involving sequential ring-opening, haloformylation, and intramolecular nucleophilic cyclization reactions is proposed.
Resumo:
A facile and efficient synthetic route towards; highly substituted isothiazol-3(2H)-ones 2 from readily available U.-carbamoyl ketene-S,S-acetals 1 is presented. The key step features the formation of an N-acylnitrenium ion, generated from the oxidization of substituted amides with the hypervalent iodine reagent phenyliodine(III) bis(trifluoroacetate) (PIFA), and its succeeding intramolecular amidation to form a new N-S bond affording the title compounds.
Resumo:
3-[Bis(ethylthio)methylene]pentane-2,4-dione (1a) and 3-[bis(benzylthio)methylene]pentane-2,4-dione (1b) have been investigated as non-thiolic and odorless thiol equivalents in thia-Michael addition reactions. In the presence of aqueous p-dodecyl benzenesulfonic acid (DBSA), compound (1) was cleaved and the generated thiols underwent facile conjugate addition to alpha,beta-unsaturated ketones 2 in-situ, affording the corresponding beta-keto sulfides (3) in good yields.