105 resultados para Impedance tube
Resumo:
A palladium membrane has been prepared by electroless plating on the surface of a porous stainless steel tube. Since the large surface pores of the tube are obstacle for preparation of a defect-free palladium film on the surface, zirconium oxide particles were deposited inside the pores. The mean thickness of the resulting Pd membrane on the modified tube was ca. 10 mum. It is suggested that the permeability of hydrogen is partly governed by gas diffusion in the pores. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In an attempt to ascertain the rate-determining steps (RDS) of TiO2 photoelectrocatalytic (PEC) reaction, the PEC oxidation of sulfosalicylic acid (SSA) solution in a TiO2-coated electrode reactor system was monitored by applying the electrochemical impedance spectroscopy (EIS) method. In the meantime, an EIS mathematical model was first established to theoretically simulate the PEC reaction. Based on the EIS model, the theoretical simulation indicates three typical reactions in a PEC oxidation process, which include the charge-transfer-dominated reaction, both the charge-transfer- and adsorption-dominated reaction, and the adsorption-dominated reaction. The experimental results of EIS measurement showed that there was only one arc/semicircle on the EIS plane display when the external bias applied was below 200 mV (vs SCE) in the SSA PEC degradation whereas there were two arcs/semicircles when the externally applied bias exceeded 200 mV (vs SCE). The experimental results have a good agreement with the model simulation. The EIS method in this study provides an easier way to determine the RDS in a PEC oxidation process, which would be helpful to better control the reaction in practice.
Resumo:
The objective of this study was to evaluate degradation behavior and the feasibility of biodegradable polymeric stents in common bile duct (CBD) repair and reconstruction. Various molar ratios of lactide (LA) and glycolide (GA) in poly(L-lactide-co-glycolide) (PLGA) were synthesized and processed into a circular tubing of similar to 10.0 mm outer diameter and a wall thickness of about 2.0 mm.
Resumo:
Structural tailoring for dimensionally confined electrical properties is fundamentally important for nanodevices and the relevant technologies. Titanate-based nanotubes were taken as a prototype one-dimensional material to study. First, Na0.96H1.04Ti3O7 center dot 3.42H(2)O nanotubes were prepared by a simple hydrothermal condition, which converted into Na0.036H1.964Ti3O7 center dot 3.52H(2)O nanotubes by a subsequent acidic rinsing. Systematic sample characterization using combined techniques of X-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy, electron paramagnetic resonance, Fourier transform infrared spectroscopy, elemental analyses, and alternative current impedance indicated that both nanotubes possessed a scrolled trititanate-type structure with the (200) crystal face predominant on the tube surface. With increasing temperature, both nanotubes underwent a continuous dehydration process, which however imposed different impacts oil the structures and electrical properties, depending on the types of the nanotubes
Resumo:
Bioactive ultrathin films with the incorporation of amino-terminated G4 PAMAM dendrimers have been prepared via layer-by-layer self-assembly methods on a gold electrode and used for the DNA hybridization analysis. Surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) are used to characterize the successful construction of the multicomponent film on the gold substrate. The dendrimer-modified surfaces improve the immobilization capacity of the probe DNA greatly, compared to the AET (2aminoethanethiol) SAM sensor surfaces without dendrimer molecules. DNA hybridization analysis is monitored by EIS. The dendrimer-based electrochemical impedance DNA biosensor shows high sensitivity and selectivity for DNA hybridization assay. The multicomponent films also display a high stability during repeated regeneration and hybridization cycles.
Resumo:
The hybridization of immobilized oligonucleotides probe strands with solution phase targets is the underlying principle of microarraybased techniques for the analysis of DNA variation. To study the kinetics of DNA/DNA hybridization, target DNA is often prior labeled with markers. A label-free method of electrochemical impedance spectra (EIS) for study the hybridization in process was reported. The Langmuir model was used to determine the association rate constant (K-on), the dissociation rate constant (K-off) and the affinity rate constant (K-A), for perfect matched DNA hybridization. The results show that, EIS is a successful technique possessing high effectivity and sensitivity to study DNA/DNA hybridization kinetics. This work can provide another view on EIS for the studying of DNA/DNA hybridization.
Resumo:
Several methods have been used for the measurement of the electronic decay constant (beta) of organic molecules. However, each of them has some disadvantages. For the first time, electrochemical impedance spectroscopy (EIS) was used to obtain the 18 value by measuring the tunneling resistance through alkanedithiols. The tunneling resistance through alkanedithiols increases exponentially with the molecular length in terms of the mechanism of coherent nonresonant tunneling. beta was 0.51 +/- 0.01 per carbon.
Resumo:
We used colloidal An to enhance the amount of antibody immobilized on a gold electrode and ultimately monitored the interaction of antigen-antibody by impedance measurement. Self-assembly of 6 nm (diameter) colloidal An onto the self-assembled monolayers (SAMs) of 4-aminothiophenol modified gold electrode resulted in an easier attachment of antibody. The redox reactions of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) on the gold surface were blocked due to the procedures of self-assembly of 4-aminothiophenol and antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.4 with various concentrations of antigen at 37 degreesC for 30 min. The antibody recognition layers and their interactions with various concentrations of antigen could be detected by measurements of the impedance change. The results show that this method has good correlation for detection of Hepatitis B virus surface antigen in the range of 0.5-200 mug/l and a detection limit of about 50 ng/l.
Resumo:
Gold nanoparticles were used to enhance the immobilization amount and retain the immunoactivity of recombinant dust mite allergen Der f2 immobilized on a glassy carbon electrode (GCE). The interaction between allergen and antibody was studied by electrochemical impedance spectroscopy (EIS). Self-assembled Au colloid layer (Phi = 16 nm) deposited on (3-mercaptopropyl)trimethoxysilane (MPTS)-modified GCE offered a basis to control the immobilization of allergen Der f2. The impedance measurements were based on the charge transfer kinetics of the [Fe(CN)(6)](3-/4-) redox pair, compared with bare GCE, the immobilization of allergen Der f2 and the allergen-antibody interaction that occurred on the electrode surface altered the interfacial electron transfer resistance and thereby slowed down the charge transfer kinetics by reducing the active area of the electrode or by preventing the redox species in electrolyte solution from approaching the electrode. The interactions of allergen with various concentrations of monoclonal antibody were also monitored through the change of impedance response. The results showed that the electron transfer resistance increased with increasing concentrations of monoclonal antibody.
Resumo:
Ultrathin multilayer films have been prepared by means of alternate adsorption of iron(Ill)-substituted heteropolytungstate anions and a cationic redox polymer on the 4-aminobenzoic acid modified glassy carbon electrode surface based on electrostatic layer-by-layer assembly. Cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis absorption spectrometry have been used to easily monitor the uniformity of thus-formed multilayer films. Especially, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes and is a very useful technique in the characterization of multilayer films because it provides valuable information about the interfacial impedance features. All these results reveal regular film growth with each layer adsorption. The resulting multilayer films can effectively catalyze the reduction of H2O2,NO2- and BrO3-.
Resumo:
Thiol-terminated oligonucleotide was immobilized to gold surface by self-assembly method. A novel amplification strategy was introduced for improving the sensitivity of DNA. hybridization using biotin labeled protein-streptavidin network complex. This complex can be formed in a cross-linking network of molecules so that the amplification of the response signal will be realized due to the big molecular size of the complex. It could be proved from the impedance technique that this amplification strategy caused dramatic improvement of the detection sensitivity. These results give significant advances in the generality and sensitivity as it is applied to biosensing.
Resumo:
A method was developed for the determination of micro mercury in the soil, plants and the traditional Chinese medicine using flow injection quartz tube-atomic absorption spectrometry. The effect of the factors such as acidity,. the carrier solution, the flow rate of reductive solution and argon gas, etc. on the determination was studied. When vanadic oxide, nitric acid and sulfuric acid were used to decompose the sample reliable result could be obtained. The characteristic mass of the method is 59 pg, the detection limit is 0.028 mug/L, RSD is < 3.9% and the recovery is in the range of 94% &SIM; 102%.
Resumo:
Polymeric electrolytes of (PEO1)(10) LiClO4-Al2O3 (PEO: poly (ethyleneoxide)) and (PEO2)(16)LiClO4-EC (EC: ethylene carbonate) were prepared. We proposed an equivalent circuit and gave the meaning of the concerned circuit elements. When the impedance spectrum deformed severely, the ionic conductivity of polymer electrolyte was determined by using the maximum of imaginary impedance, which is a convenient method.
Resumo:
The interaction of lanthanide ions with a supported bilayer lipid (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine) membrane (sBLM) was investigated by cyclic voltammetry and ac impedance spectroscopy in this paper, Lanthanide can affect the conformation of the supported bilayer lipid membrane and cause pore formation. Through the pores, Fe(CN)(6)(3) (4) can reach the electrode surface and show its redox behaviour. Furthermore the redox currents or Fe(CN)(6)(3) (4) increased with increasing concentration of lanthanides and leveled off at 1.2 muM for Eu3+. The interaction ability of three lanthanides with sBLM follows the sequence: Eu3+ > Tb3+ > La3+.