387 resultados para III-Nitride
Resumo:
Er photoluminescence (Er PL) and dangling bonds (DBs) of annealed Er-doped hydrogenated amorphous silicon nitride (a-SiN:H(Er)) with various concentrations of nitrogen are studied in the temperature range 62-300 K. Post-annealing process is employed to change the DBs density of a-SiN:H(Er). PL spectra, DBs density and H, N concentrations are measured. The intensity of Er PL displays complicated relation with Si DBs density within the annealing temperature range 200-500 degreesC. The intensity of Er PL first increases with decreasing density of Si dangling bonds owing to the structural relaxation up to 250 degreesC, and continues to increase up to 350 degreesC even though the density of Si DBs increases due to the improvement of symmetry environment of Er3+. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Effects of V/III ratio on heavily Si doped InGaAs and InP were studied using low pressure metalorganic chemical vapor deposition (LP-MOCVD) at a growth temperature of 550degreesC. In InGaAs, as the V/III ratio decreases from 256 to 64, the carrier concentration increases from 3.0 x 10(18) to 5.8 x 10(18) cm(-3), and the lattice mismatch of InGaAs to InP was observed to vary from -5.70 x10(-4) to 1.49 x 10(-3). In InP, when the V/III ratio decreases from 230 to 92, the same trend as that in Si doped InGaAs was observed that the carrier concentration increases from 9.2 x 10(18) to 1.3 x 10(19) cm(-3). The change of AsH3 was found to have stronger effect on Si incorporation in InGaAs at lower growth temperature than at higher growth temperature. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
To investigate the effect of radiation damage on the stability and the compressive stress of cubic boron nitride (c-BN) thin films, c-BN films with various crystalline qualities prepared by dual beam ion assisted deposition were irradiated at room temperature with 300 keV Ar+ ions over a large fluence range up to 2 x 10(16) cm(-2). Fourier transform infrared spectroscopy (FTIR) data were taken before and after each irradiation step. The results show that the c-BN films with high crystallinity are significantly more resistant against medium-energy bombardment than those of lower crystalline quality. However, even for pure c-BN films without any sp(2)-bonded BN, there is a mechanism present, which causes the transformation from pure c-BN to h-BN or to an amorphous BN phase. Additional high resolution transmission electron microscopy (HRTEM) results support the conclusion from the FTIR data. For c-BN films with thickness smaller than the projected range of the bombarding Ar ions, complete stress relaxation was found for ion fluences approaching 4 x 10(15) cm(-2). This relaxation is accompanied, however, by a significant increase of the width of c-BN FTIR TO-line. This observation points to a build-up of disorder and/or a decreasing average grain size due to the bombardment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper reviews our work on controlled growth of self-assembled semiconductor nanostructures, and their application in light-emission devices. High-power, long-life quantum dots (QD) lasers emitting at similar to 1 mu m, red-emitting QD lasers, and long-wavelength QD lasers on GaAs substrates have successfully been achieved by optimizing the growth conditions of QDs.
Resumo:
Using first-principles methods, we have systematically calculated the defect formation energies and transition energy levels of group-III and group-V impurities doped in H passivated Si quantum dots (QDs) as functions of the QD size. The general chemical trends found in the QDs are similar to that found in bulk Si. We show that defect formation energy and transition energy level increase when the size of the QD decreases; thus, doping in small Si QDs becomes more difficult. B-Si has the lowest acceptor transition energy level, and it is more stable near the surface than at the center of the H passivated Si QD. On the other hand, P-Si has the smallest donor ionization energy, and it prefers to stay at the interior of the H passivated Si QD. We explained the general chemical trends and the dependence on the QD size in terms of the atomic chemical potentials and quantum confinement effects.
Resumo:
Cubic boron nitride (c-BN) attracts widespread interest as a promising material for many potential applications because of its unique physical and chemical properties. Since the 1980's the research in c-BN thin films has been carried out, which reached its summit in the mid of 1990's, then turned into a downward period. In the past few years, however, important progress was achieved in synthesis and properties of cubic boron nitride films, such as obtaining > 1 mu m thick c-BN films, epitaxial growth of single crystalline c-BN films, and advances in mechanics properties and microstructures of the interlayer of c-BN films. The present article reviews the current status of the synthesis and properties of c-BN thin films.
Resumo:
The V/III ratio in the initial growth stage of metalorganic chemical vapor deposition has an important influence on the quality of a GaN epilayer grown on a low-temperature AIN buffer layer and c-plane sapphire substrate. A weaker yellow luminescence, a narrower half-width of the X-ray diffraction peak, and a higher electron mobility result when a lower V/III ratio is taken. The intensity of in situ optical reflectivity measurements indicates that the film surface is rougher at the beginning of GaN growth, and a longer time is needed for the islands to coalesce and for a quasi-two dimensional mode growth to start. A comparison of front- and back-illuminated photoluminescence spectra confirms that many threading dislocations are bent during the initial stage, leading to a better structural quality of the GaN layer. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effects of electron-phonon interaction oil energy levels of a. polaron in a wurtzite nitride finite parabolic quantum well (PQW) are studied by using a modified Lee-Low-Pines variational method. The ground state, first excited state, and transition energy of the polaron in the GaN/Al0.3Ga0.7N wurtzite PQW are calculated by taking account of the influence of confined LO(TO)-like phonon modes and the half-space LO(TO)-like phonon modes and considering the anisotropy of all kinds of phonon modes. The numerical results are given and discussed. The results show that the electron phonon interaction strongly affects the energy levels of the polaron, and the contributions from phonons to the energy of a polaron hi a wurtzite nitride PQW are greater than that in all AlGaAs PQW. This indicates that the electron-phonon interaction in a wurtzite nitride PQW is not negligible.
Resumo:
The electronic structures and electron g factors of InSb1-sNs and GaAs1-sNs nanowires and bulk material under the magnetic and electric fields are investigated by using the ten-band k.p model. The nitrogen doping has direct and indirect effects on the g factors. A giant g factor with absolute value larger than 900 is found in InSb1-sNs bulk material. A transverse electric field can increase the g factors, which has obviously asymmetric effects on the g factors in different directions. An electric field tunable zero g factor is found in GaAs1-sNs nanowires. (C) 2007 American Institute of Physics.
Resumo:
Condensed clusters of point defects within an InGaN/AlGaN double heterostructure grown by metal-organic vapor phase epitaxy on sapphire substrate have been observed using transmission electron microscopy. The existence of voids results in failure of the heterostructure in electroluminescence. The voids are 50-100 nm in diameter and are distributed inhomogeneously within In0.25Ga0.75N/AlGaN active layers. The density of the voids was measured as 10(15) cm(-3), which corresponds to a density of dangling bonds of 10(20) cm(-3). These dangling bonds may fully deplete free carriers in this double heterostructure and result in the heterostructure having high resistivity as confirmed by electrical measurement. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A new method of measuring the thickness of GaN epilayers on sapphire (0 0 0 1) substrates by using double crystal X-ray diffraction was proposed. The ratio of the integrated intensity between the GaN epilayer and the sapphire substrate showed a linear relationship with the GaN epilayer thickness up to 2.12 mum. It is practical and convenient to measure the GaN epilayer thickness using this ratio, and can mostly eliminate the effect of the reabsorption, the extinction and other scattering factors of the GaN epilayers. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
(1 1 (2) over bar 0) GaN/InGaN multiple quantum wells (MQWs) were grown on (1 (2) over bar 0 2) sapphire by metal-organic vapor phase epitaxy. The excitation-intensity-dependent photoluminescence (PL) spectrum of these samples was measured, and no peak shift was observed. This phenomenon was attributed to the absence of piezoelectric field (PEF) along the growth orientation of the (1 1 (2) over bar 0) face MQWs. Our experimental results showed that PEF was the main reason causing peak blueshift in excitation-intensity-dependent PL spectrum of (0 0 0 1) InGaN/GaN NIQWs. It was expected that fabricating (1 1 (2) over bar 0) face nitride device should be a method to avoid PEF and get low-threshold, high-quantum-efficiency and stable-emission-wavelength light-emission devices. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Morphology of Gallium Nitride (GaN) in initial growth stage was observed with atomic force microscopy (AFM) and scanning electron microscopy (SEM), It was found that the epilayer developed from islands to coalesced film. Statistics based on AFM observation was carried out to investigate the morphology characteristics. It was found that the evolution of height distribution could be used to describe morphology development. Statistics also clearly revealed variation of top-face growth rate among islands. Indium-doping effect on morphology development was also statistically studied. The roughening and smoothing behavior in morphology development was explained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Hydrogen behavior in unintentionally doped GaN epilayers on sapphire substrates grown by NH3-MBE is investigated. Firstly, we find by using nuclear reaction analysis (NRA) that with increasing hydrogen concentration the background electron concentration increases, which suggests that there exists a hydrogen-related donor in undoped GaN, Secondly, Fourier transform infrared (FTIR) absorption and X-ray photoelectron spectroscopy (XPS) reveal Further that hydrogen atom is bound to nitrogen atom in GaN with a local vibrational mode at about 3211 cm(-1) Hence, it is presumed that the hydrogen-related complex Ga. . .H-N is a hydrogen-related donor candidate partly responsible for high n-type background commonly observed in GaN films. Finally, Raman spectroscopy results of the epilayers show that ill addition to the expected compressive biaxial strain, in some cases GaN films suffer from serious tensile biaxial strain. This anomalous behavior has been well interpreted in terms of interstitial hydrogen lattice dilation. (C) 2001 Elsevier Science B.V. All rights reserved.