353 resultados para Highly Pathogenic Avian Influenza


Relevância:

20.00% 20.00%

Publicador:

Resumo:

InAs layers were grown on GaAs by molecular beam epitaxy (MBE) at substrate temperature 450 and 480 degrees C, and the surface morphology was studied with scanning electron microscopy (SEM). We have observed a high density of hexagonal deep pits for samples grown at 450 degrees C, however, the samples grown at 480 degrees C have smooth surface. The difference of morphology can be explained by different migration of cations which is temperature dependent. Cross-sectional transmission electron microscopy (XTEM) studies showed that the growth temperature also affect the distributions of threading dislocations in InAs layers because the motion of dislocations is kinetically limited at lower temperature. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

zhangdi于2010-03-09批量导入

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report highly efficient and stable organic light-emitting diodes (OLEDs) with MoO3-doped perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA) as hole injection layer (HIL). A green OLED with structure of ITO/20 wt% MoO3: PTCDA/NPB/Alq(3)/LiF/Al shows a long lifetime of 1012 h at the initial luminance of 2000 cd/m(2), which is 1.3 times more stable than that of the device with MoO3 as HIL. The current efficiency of 4.7 cd/A and power efficiency of 3.7 lm/W at about 100 cd/m(2) have been obtained. The charge transfer complex between PTCDA and MoO3 plays a decisive role in improving the performance of OLEDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A radially polarized beam focused by a high-numerical-aperture (NA) objective has a strong longitudinal and nonpropagating electric field in the focal region, which implies that it is suitable for axial optical trapping. In this paper, we use the vectorial diffraction integral to represent the field distribution of the radially polarized beam focused by a high-NA objective and then employ the T-matrix method to compute the radiation forces on spherical particles. Effects of different parameters, such as the size of the sphere, the inner radius of the radially polarized beam, and the NA of the objective, on the radiation forces are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we investigate the lateral periodicity of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of X-ray scattering techniques. The multilayers were grown by metalorganic Vapour phase epitaxy on (001)GaAs substrates, which were intentionally off-oriented towards the [011]-direction. The substrate off-orientation and the strain distribution was found to affect the structural properties of the superlattices inducing the generation of laterally ordered macrosteps. Several high-resolution triple-crystal reciprocal space maps, which were recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction and contour maps of the specular reflected beam collected in the vicinity of the (000) reciprocal lattice point, are reported and discussed. The reciprocal space maps clearly show a two-dimensional periodicity of the X-ray peak intensity distribution which can be ascribed to the superlattice periodicity in the direction of the surface normal and to a lateral periodicity in a crystallographic direction coinciding with the miscut orientation. The distribution and correlation of the vertical as well as of the lateral interface roughness was investigated by specular reflectivity and diffuse scattering measurements. Our results show that the morphology of the roughness is influenced by the off-orientation angle and can be described by a 2-dimensional waviness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current based microscopic defect analysis methods such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC) have been further developed in accordance with the need for the defect analysis of highly irradiated (Phi(n) > 10(13) n/cm(2)) high resistivity silicon detectors. The new I-DLTS/TSC system has a temperature range of 8 K less than or equal to T less than or equal to 450 K and a high sensitivity that can detect a defect concentration of less than 10(10)/cm(3) (background noise as low as 10 fA). A new filling method using different wavelength laser illumination has been applied, which is more efficient and suitable than the traditional voltage pulse filling. It has been found that the filling of a defect level depends on such factors as the total concentration of free carriers generated or injected, the penetration length of the laser (laser wavelength), the temperature at which the filling is taking place, as well as the decay time after the filling (but before the measurement). The mechanism of the defect filling can be explained by the competition between trapping and detrapping of defect levels, possible capture cross section temperature dependence, and interaction among various defect levels in terms of charge transferring. Optimum defect filling conditions have been suggested for highly irradiated high resistivity silicon detectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

于2010-11-23批量导入

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method is realized for the growth of self-formed quantum dots. We identify that dislocation-free islands can be formed by the strain from the strained superlattice taken as a whole. Unlike the Stranski-Krastanow (S-K) growth mode, the islands do not form during the growth of the corresponding strained single layers. Highly uniform quantum dots can be self-formed via this mechanism. The low temperature spectra of self-formed InGaAs/GaAs quantum dot superlattices grown on a (001) GaAs substrate have a full width at half maximum of 26-34 meV, indicating a better uniformity of quantum dot size than those grown in the S-K mode. This method can provide great degrees of freedom in designing possible quantum dot devices. 1998 Published by Elsevier Science B.V. All rights reserved.