260 resultados para High Power Semiconductor Laser Arrays
Resumo:
A series-parallel model is introduced to calculate the effective thermal conductivities of hollow claddings of photonic crystal fibers ( PCFs ). The temperature distribution and thermal-optical properties of PCF lasers are studied by solving the heat transfer equations. The average power scaling of the PCF lasers in respect of the thermal effects is also discussed. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Phase locking of two fiber lasers is demonstrated experimentally by the use of a self-imaging resonator with a spatial filter. The high-contrast interference strips of the coherent beam profile are observed. The coherent output power of the fiber array exceeds 12W and the efficiency of coherent power combination is 88% with pump power of 60W. The whole system operates quite stably and, for the spatial filter, no thermal effects have been observed, which means that we can increase the coherent output power further by this method. (c) 2006 Optical Society of America
Resumo:
A series-parallel model is introduced to calculate the effective thermal conductivities of hollow claddings of photonic crystal fibers ( PCFs ). The temperature distribution and thermal-optical properties of PCF lasers are studied by solving the heat transfer equations. The average power scaling of the PCF lasers in respect of the thermal effects is also discussed. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
High-power and broadband quantum-dot (QD) superluminescent light-emitting diodes are realized by using a combination of self-assembled QDs with a high density, large inhomogeneous broadening, a tapered angled pump region, and etched V groove structure. This broad-area device exhibits greater than 70-nm 3-dB bandwidth and drive current insensitive emission spectra with 100-mW output power under continuous-wave operation. For pulsed operation, greater than 200-mW output power is obtained.
Resumo:
Variations in optical spectrum and modulation band-width of a modulated Fabry-Perot (FP) semiconductor laser subject to the external light injection from another FP Laser is investigated in this paper. Optimal wavelength matching conditions for two FP lasers are discussed. A series of experiments show that two FP lasers should have a central wavelength overlapping and a mode spacing difference of several gigahertz. Under these conditions both the magnitude and phase frequency responses can be improved significantly.
Resumo:
A novel type of integrated InGaAsP superluminescent light source was fabricated based on the tilted ridge-waveguide structure with selective-area quantum well (QW) intermixing. The bandgap structure along the length of the device was modified by impurity free vacancy diffusion QW intermixing, The spectral width was broadened from the 16 nm of the normal devices to 37 nm of the QW intermixing enhanced devices at the same output power level. High superluminescent power (210 mW) was obtained under pulsed conditions with a spectral width of 37 nm.
Resumo:
An electroabsorption modulator using an intra-step quantum well (IQW) active region is fabricated for a radio over fibre system. The strain-compensated InGaAsP/InGaAsP IQW shows good material quality and improved modulation properties, high extinction ratio efficiency (10 dB V-1) and low capacitance (< 0.42 pF), with which high frequency (> 15 GHz) can be obtained. High-speed measurement under high-power excitation shows no power saturation up to an excitation power of 21 dBm. To our knowledge, the input optical power is the highest reported for a multi-quantum well EAM without a heat sink.
Resumo:
An electroabsorption modulator using the intrastep quantum well (IQW) active region is fabricated for optical network systems. The strain-compensated InGaAsP/InGaAsP IQW shows good material quality and improved modulation properties, high extinction ratio elliciency 10 dB/V and low capacitance (< 0.42 pF), with which an ultra high frequency (> 15 GHz) can be obtained. High-speed measurement under high-power excitation shows no power saturation up to excitation power of 21 dBm. To our knowledge, the input optical power is the highest reported for multi-quantum well EAMs without heat sinks.
Resumo:
A novel and simple method for measuring the chirp parameter, frequency, and intensity modulation indexes of directly modulated lasers is proposed in a small-signal modulation scheme. A graphical approach is presented. An analytical solution to the measurement of low chirp parameters is also given. The measured results agree well with those obtained using the conventional methods.
Resumo:
Coupling coefficient is an important parameter for distributed feedback lasers. Modified coupled-wave equations are used to calculate the effect of grating shape on coupling coefficient of the second-order gratings. Corresponding devices demonstrate that the maximum kink-free power per facet reaches 50 mW and the sidemode suppression ratio is 36 dB.
Resumo:
The measurements of one hundred 1.3 mu m planar buried crescent (PBC) structure InGaAsP/InP lasers demonstrate that parameters given by the electrical derivative of varied temperature and the variation of the parameters with temperature can be used to appraise the quality and reliability of semiconductor lasers effectual. By measurement of electrical derivative curves one can evaluate the quality of epitaxial wafer and chip, find the problems in the material and the technology, offer the useful information on increasing the quality and improving the technology of devices. (C) 2000 Elsevier Science Ltd. All rights reserved.