89 resultados para Hemicellulose degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermooxidative degradtion of ethylene oxide and tetra-hydrofuran (EO-THF) co-polyether has been studied by electron spin resonance (ESR), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. The initial degradation site was found to be at the a-carbon of the ether bond. Two free radicals which derived from dehydrogenation and oxygen addition were successfully detected by spin-trapping technique which used alpha -phenyl-N-tert-butyl nitrone(PBN) as spin trap. Both FT-IR and NMR have been used to follow structural changes of the copolyether during degradation. Nearly 20 product fragments including formate, carbonate, methyl, alcohol, methylene-dioxy, hydroperoxide and semiformal have been characterized by D-1 and D-2 NMR. The thermooxidtion of co-polyether preferred to occur on the THF units especially at the alternating linkage of EO and THF. Antioxidant (BHT) not only retarded the thermooxidation but also modified the degradation products with less ester and methylene-dioxy groups hut more hydroxyl and methyl groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blend films of poly(epsilon-caprolactone) (PCL) and poly(DL-lactide) (PDLLA) with 0.5 weight fraction of PCL were prepared by means of solution casting and their degradation behavior was studied in phosphate buffer solution containing Pseudomonas (PS) lipase. Enzymatic degradation of the blend films occurred continuously within the first 6 days and finally stopped when the film weight loss reached 50%, showing that only PCL in the blends degraded under the action of PS lipase in the buffer solution. These results indicate the selectivity of PS lipase on the promotion of degradation for PCL and PDLLA. The thermal properties and morphology of the blend films were investigated by differential scanning calorimetry, wide-angle X-ray diffraction and scanning electron microscopy (SEM). The morphology resulting from aggregate structures of PCL in the blends was destroyed in the enzymatic degradation process, as observed by SEM. These results confirm again the enzymatic degradation of PCL in the blends in the presence of PS lipase. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzymatic degradation of poly(epsilon-caprolactone) (PCL) films in phosphate buffer solution containing lipases has been studied by DSC, WAXD and SEM. Three lipases, pseudomonas lipase (PS), porcine pancreatic lipase (PP), and candida cylindracea lipase (AY), were used. The results showed that the degradation of PCL films in phosphate buffer solution containing PP or AY was very slow: no weight loss could be found within 1 week. However, PCL film could degrade rapidly and completely within 4 days in phosphate buffer solution containing PS lipase. (C) 1997 Elsevier Science Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dye C.I. Acid Blue 80 (AB80) was easily degraded by TiO2-P25 assisted photocatalysis in aqueous dispersion under irradiation of sunlight. The optimal reaction conditions were [TiO2] = 2.0 g/L, pH = 10, [H2O2] = 5 mmol/L. The photocatalytic reaction followed pseudo-first order kinetics. The adsorption of AB80 onto TiO2 was in accord with Langmuir equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, ascorbate and hydrogen peroxide (H2O2) were used to degrade porphyran. It was found that porphyran could be degraded by free radical that was generated by ascorbate and H2O2 in combination. It was possible to prepare desired porphyran products with different molecular weight by adjusting ascorbate to H,02 proportions and their concentrations. The molar ratio of I was demonstrated more effective than in other ratios. Higher concentrations accelerated the degradation. Moreover, results of chemical analysis and FT-IR spectra suggested that the main structure of degraded products still remained although some changes happened. The degraded and natural porphyrans possessed scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH)-radical activity and reducing power. Higher antioxidant activities were found in both systems when the molecular weight was reduced. The results indicated that the antioxidant activities were closely related to the molecular weight. The degraded porphyrans are potential antioxidant in vitro. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A practical and efficient disposal method for hydrodechlormation of polychlorinated biphenyls (PCBs) in transformer oil is reported. Transformer oil containing PCBs was treated by nanometric sodium hydride (nano-NaH) and transition metal catalysts. High destruction and removal efficiency (89.8%) can be attained by nano-NaH alone under mild conditions. The process exhibits apparent characteristics of a first order reaction. The reductive ability of nano-NaH was enhanced by the addition of transition metal catalysts. In the presence of TiCl4, 99.9% PCBs was hydrodechlorinated. The complex reducing reagents, Ni(OAc)(2) + i-PrONa, show extra hydrodechlorinating activity for di-chlorinated biphenyls. (c) 2004 Elsevier Ltd. All rights reserved.