119 resultados para Grafting.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Core-shell polybutadiene-graft-polystyrene (PB-g-PS) rubber particles with different ratios of polybutadiene to polystyrene were prepared by emulsion polymerization through grafting styrene onto polybutadiene latex. The weight ratio of polybutadiene to polystyrene ranged from 50/50 to 90/10. These core-shell rubber particles were then blended with polystyrene to prepare PS/PB-g-PS blends with a constant rubber content of 20 wt%. PB-g-PS particles with a lower PB/PS ratio (<= 570/30) form a homogeneous dispersion in the polystyrene matrix, and the Izod notched impact strength of these blends is higher than that of commercial high-impact polystyrene (HIPS). It is generally accepted that polystyrene can only be toughened effectively by 1-3 mu m rubber particles through a toughening mechanism of multiple crazings. However, the experimental results show that polystyrene can actually be toughened by monodisperse sub-micrometer rubber particles. Scanning electron micrographs of the fracture surface and stress-whitening zone of blends with a PB/PS ratio of 70/30 in PB-g-PS copolymer reveal a novel toughening mechanism of modified polystyrene, which may be shear yielding of the matrix, promoted by cavitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of acrylonitrile-butadiene-styrene (ABS) with different rubber content were prepared by diluting ABS grafting copolymer containing 60% rubber with a styrene-acrylonitrile copolymer. ABS prepared were blended with bisphenol-A-polycarbonate (PC) at the ratio of 70/30, 50/50, and 30/70 to prepare PC/ABS blends. Influence of rubber content in ABS on the properties of ABS and PC/ABS blends were investigated. PC/ABS blends with different compositions got good toughness when the rubber in ABS increased to the level that ABS itself got good toughness. The tensile properties and processability of PC/ABS blends decreased with the increase of the total rubber content introduced into the blends. ABS with the rubber content of 30 wt% is most suitable to be used to prepare PC/ABS blends. The rubber content in ABS affected the viscosity of ABS, and subsequently the viscosity ratio of PC to ABS. As a result, the morphology of PC/ABS blends varied. The increase of rubber content in ABS results in finer structure of PC/ABS blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of acrylonitrile-butadiene-styrene (ABS) core-shell modifier with different grafting degree, acrylonitrile (AN) content, and core-shell ratio in toughening of poly(butylene terephthalate) (PBT) matrix was investigated. Results show PBT/ABS blends fracture in ductile mode when the grafting degree is high, and with the decrease of grafting degree PBT/ABS blends fracture in a brittle way. The surface of rubber particles cannot be covered perfectly for ABS with low grafting degree and agglomeration will take place; on the other hand, the entanglement density between SAN and PBT matrix decreases because of the low grafting degree, inducing poor interfacial adhesion. The compatibility between PBT and ABS results from the strong inter-action between PBT and SAN copolymer and the interaction is influenced by AN content. Results show ABS cannot disperse in PBT matrix uniformly when AN content is zero and PBT/ABS fractures in a brittle way. With the addition of AN in ABS, PBT/ABS blends fracture in ductile mode. The core-shell ratio of ABS copolymers has important effect on PBT/ABS blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graft copolymerization of maleic anhydride (MA) onto poly(3-hydroxybutyrate) (PHB) was carried out by use of benzoyl peroxide as initiator. The effects of various polymerization conditions on graft degree were investigated, including solvents, monomer and initiator concentrations, reaction temperature, and time. The monomer and initiator concentrations played an important role in graft copolymerization, and graft degree could be controlled in the range from 0.2 to 0.85% by changing the reaction conditions. The crystallization behavior and the thermal stability of PHB and maleated PHB were studied by DSC, WAXD, optical microscopy, and TGA. The results showed that, after grafting MA, the crystallization behavior of PHB was obviously changed. The cold crystallization temperature from the glass state increased, the crystallization temperature from the melted state decreased, and the growth rate of spherulite decreased. With the increase in graft degree, the banding texture of spherulites became more distinct and orderly. Moreover, the thermal stability of maleated PHB was obviously improved, compared with that of pure PHB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new type of sol-gel-derived titanium oxide/copolymer composite material was developed and used for the construction of glucose biosensor. The composite material merged the best properties of the inorganic species, titanium oxide and the organic copolymer, poly(vinyl alcohol) grafting 4-vinylpyridine (PVA-g-PVP). The glucose oxidase entrapped in the composite matrix retained its bioactivity. Morphologies of the composite-modified electrode and the enzyme electrode were characterized with a scanning electron microscope. The dependence of the current responses on enzyme-loading and pH was studied. The response time of the biosensor was < 20 s and the linear range was up to 9 mM with a sensitivity of 405 nA/mM. The biosensor was stable for at least I month. In addition, the tetrathiafulvalene-mediated enzyme electrode was constructed for the decrease of detection potential and the effect of three common physiological sources that might interfere was also investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel type of biochemical oxygen demand (BOD) biosensor was developed for water monitor, based on co-immobilizing of Trichosporon cutaneum and Bacillus subtilis in the sol-gel derived composite material which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)). Factors that influence the performance of the resulting biosensor were examined. The biodegradable substrate spectrum could be expanded by the co-immobilized microorganisms. The biosensor prepared also exhibited good reproducibility and long-term stability. Good agreement was obtained between the results of the sensor BOD measurement and those obtained from conventional BOD5 method for water samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An ethylene-propylene copolymer (EPM) was functionalized with an iso cyanate-bearing unsaturated monomer, allyl(3-isocyanate-4-tolyl) carbamate (TAI), with dicumyl peroxide as an initiator in a xylene solution. Fourier transform infrared (FTIR) was used to confirm the formation of EPM-g-TAI. The peak at 2273 cm(-1), characteristic of -NCO groups in EPM-g-TAI, revealed evidence of grafting. The grafting degree was determined with both chemical titration and FTIR. The grafting degree could be adjusted, and the maximum was over 6 wt % without any gelation. The molar mass distribution of EPM-g-TAI was narrower than that of EPM. The rheological behavior of both EPM-g-TAI and EPM was investigated with a rotational rheometer. The apparent viscosity of EPM-g-TAI was higher than that of EPM and increased with an increasing grafting degree of TAI. Surface analysis by contact-angle measurements showed that contact angles of EPM-g-TAI samples to a given polar liquid decreased with an increasing grafting degree of TAI. We also obtained the dispersion component of the surface free energy (gamma(S)(d)), the polar component of the surface free energy (gamma(S)(d)), and the total surface free energy (gamma(S) = gamma(S)(d) + gamma(S)(p)) of the grafted EPM. These parameters increased with the enhancement of the grafting degree, which gave us a quantitative estimation of the polar contribution of the grafted TAI to the total surface free energy of EPM-g-TAI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report capillary electrophoresis coupling to a solid-state electrochemiluminescence (ECL) detector for the first time. The solid-state ECL detector was fabricated by immobilizing the ECL reagent tris(2,2'-bipyridyf)ruthenium (TBR) in poly-(p-styrenesulfonate)-silica-poly(vinyl alcohol) grafting 4-vinylpyridine copolymer films. The excellent stability of the solid-state ECL detector in the phosphate solution satisfied application in CE. The CE with solid-state ECL detector system was characterized using tripropylamine (TPA) and proline. The influences of detection potential, the concentration of TBR in the film, and pH value of ECL buffer were investigated. The linear range for TPA and proline was 0.005-10 muM and 5-10 mM with correlation coefficients of 0.997 and 0.998, respectively. The detection limit (signal-to-noise ratio S/N = 3) was estimated to be 0.002 and 2.0 muM for TPA and proline, respectively. The relative standard deviations for 1.0 pm TPA and 1.0 mm proline were 8.7% and 7.5% with theoretical plate numbers of 70 000 and 16 000, respectively. Compared with the CE-ECL of TBR in aqueous solution, the CE coupling with solid-state ECL detector system gave the same sensitivity of analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is intended to provide a method for the preparation of maleic anhydride grafted syndiotactic polystyrene (sPS-g-MA). In particular, a novel solid reaction method by a radical grafting approach is investigated. The grafting reaction is performed at a solid state, where the syndiotactic polystyrene (sPS) is swollen in solvent at relatively low temperature compared to the conventional melt modification method. The formation of sPS-g-MA is directly confirmed by Fourier transform infrared spectroscopy and by the morphology observation of sPS/polyamide-6 (Nylon6) blends, when sPS-g-MA is used as a reactive compatibilizer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modification of high-impact polystyrene (HIPS) was accomplished by melt-grafting glycidyl methacrylate (GMA) on its molecular chains. Fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis were used to characterize the formation of HIPS-g-GMA copolymers. The content of GMA in HIPS-g-GMA copolymer was determined by using the titration method. The effect of the concentrations of GMA and dicumyl peroxide on the degree of grafting was studied. A total of 1.9% of GMA can be grafted on HIPS. HIPS-g-GNU was used to prepare binary blends with poly(buthylene terephthalate) (PBT), and the evidence of reactions between the grafting copolymer and PBT in the blends was confirmed by scanning electron microscopy (SEM), dynamic mechanical analysis, and its mechanical properties. The SEM result showed that the domain size in PBT/HIPS-g-GMA blends was reduced significantly compared with that in PBT/HIPS blends; moreover, the improved strength was measured in PBT/HIPS-g-GMA blends and results from good interfacial adhesion. The reaction between ester groups of PBT and epoxy groups of HIPS-g-GMA can depress crystallinity and the crystal perfection of PBT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) (PHB) and maleated PHB were investigated by differential scanning calorimetry using various cooling rates. The results show that the crystallization behavior of maleated PHB from the melt greatly depends on cooling rates and its degree of grafting. With the increase in cooling rate, the crystallization process for PHB and maleated PHB begins at lower temperature. For maleated PHB, the introduction of maleic anhydride group hinders its crystallization, causing crystallization and nucleation rates to decrease, and crystallite size distribution becomes wider. The Avrami analysis, modified by Jeziorny, was used to describe the nonisothermal crystallization of PHB and maleated PHB. Double melting peaks for maleated PHB were observed, which was caused by recrystallization during the heating process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The graft copolymer of high impact polystyrene (HIPS) grafted with malice anhydride (MA) (HIPS-g-MA) was prepared with melt mixing in the presence of a free-radical initiator. The grafting reaction was confirmed by IR analyses and the amount of MA grafted on HIPS was evaluated by a titration method. 1-5 wt% of MA can be grafted on HIPS. HIPS-g-MA is miscible with HIPS. Its anhydride group can react with the PA6 during melt mixing the two components. The compatibility of HIPS-g-MA in the HIPS/PA6 blends was evident. Evidence of reactions in the blends was confirmed in the morphology and mechanical properties of the blends. A significant reduction in domain size was observed because of the compatibilization of HIPS-g-MA in the blends of HIPS and PA6. The tensile mechanical properties of the prepared blends were investigated and the fracture surfaces of the blends were examined by means of the scanning electron microscope (SEM). The improved adhesion in a 16%HIPS/75%PA6 blend with 9%HIPS-g-MA copolymer was detected. The morphology of fibrillar ligaments formed by PA6 connecting HIPS particles was observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of thermally crosslinkable polymerization of monomer reactant-polyimide (POI) on the miscibility, morphology, and crystallization of partially miscible poly(ether sulfone) (PES)/poly(phenylene sulfide) (PPS) blends were investigated with differential scanning calorimetry and scanning electron microscopy. The addition of POI led to a significant reduction in the size of PPS particles, and the interfacial tension between PPS and crosslinked POI was smaller than that between PES and crosslinked POI. During melt blending, crosslinking and grafting reactions of POI with PES and PPS homopolymers were detected; however, the reaction activity of POI with PPS was much higher than that with PES. The crosslinking and grafting reactions were developed further when blends were annealed at higher temperatures. Moreover, POI was an effective nucleation agent of the crystallization of PPS, but crosslinking and grafting hindered the crystallization of PPS. The final effect of POI on the crystallinity of the PPS phase was determined by competition between the two contradictory factors. The crosslinking and grafting reactions between the two components was controlled by the dosage of POI in the blends, the premixing sequence of POI with the two components, the annealing time, and the temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An amperometric tyrosinase enzyme electrode for the determination of phenols was developed by a simple and effective immobilization method using sol-gel techniques. A grafting copolymer was introduced into sol-gel solution and the composition of the resultant organic-inorganic composite material was optimized, the tyrosinase retained its activity in the sol-gel thin film and its response to several phenol compounds was determined at 0 mV vs. Ag/AgCl (sat. KCI). The dependences of the current response on pH, oxygen level and temperature were studied, and the stability of the biosensor was also evaluated. The sensitivity of the biosensor for catechol, phenol and p-cresol was 59.6, 23.1 and 39.4 muA/mM, respectively. The enzyme electrode maintained 73% of its original activity after intermittent use for three weeks when storing in a dry state at 4 degreesC. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel amperometric biosensor for quantification of the electrochemically inert polar organic solvents based on tyrosinase electrode was preliminarily reported. The biosensor was fabricated by simply syringing an aqueous solution of tyrosinase/PVAVP (PVAVP: copolymer of poly(vinyl alcohol) grafting with 4-vinylpyridine) onto glassy carbon electrode surface followed by drying the modified electrode at +4 degrees C in a refrigerator. The current generated from electrochemical reduction of quinone is a probe signal. The biosensor can be used for quantification of polar organic solvents, and its mechanism was characterized with in situ steady-state amperometry-quartz crystal microbalance experiments. The detection limit, sensitivity, and dynamic range for certain organic solvents are dependent on the kind and concentration of the substrate probe and the hydrophobicity of the immobilization matrix. The response time for all the tested organic solvents is less than 2 min.