160 resultados para GJ 876d


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simple single-dopant white organic light-emitting devices (WOLEDs) with optimized efficiency/color quality/brightness trade-offs are developed; the white light produced shows the best color quality ever exhibited by WOLEDs at very high brightness, and is even able to duplicate the natural sunlight source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A facile approach to the preparation of light-responsive copolymer micelles is developed. This approach is based on the attachment of hydrophobic groups to one block of a diblock copolymer via a light-sensitive linkage. The micelles can be dissociated under light irradiation and release the encapsulated pyrene. The obtained polymeric micelles are expected to be of use as drug-delivery vehicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By fusing an electron-deficient ring system with the phenyl ring of a 2-phenylpyridine (ppy)-type ligand, a new and synthetically versatile strategy for the phosphorescence color tuning of cyclometalated iridium(III) and platinum(II) metallophosphors has been established. Two robust red electrophosphors with enhanced electron-injection/electron-transporting features were prepared by using an electron-trapping fluoren-9-one chromophore in the ligand design. The thermal, photophysical, redox and electrophosphorescent properties of these complexes are reported. These exciting results can be attributed to a switch of the metal-to-ligand charge-transfer (MLCT) character of the transition from the pyridyl groups in the traditional Ir-III or Pt-II ppy-type complexes to the electron-deficient ring core, and the spectral assignments corroborate well with the electrochemical data as well as the timedependent density functional theory (TD-DFT) calculations. The electron-withdrawing character of the fused ring results in much more stable MLCT states, inducing a substantial red-shift of the triplet emission energy from yellow to red for the Ir-III complex and even green to red for the PtII counterpart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated electrical properties of vanadyl phthalocyanine (VOPc) metal-insulator-semiconductor (MIS) devices by the measurement of capacitance and conductance, which were fabricated on ordered para-sexiphenyl (p-6P) layer by weak epitaxy growth method. The VOPc/p-6P MIS diodes showed a negligible hysteresis effect at a gate voltage of +/- 20 V and small hysteresis effect at a gate voltage of +/- 40 V due to the low interface trap state density of about 1x10(10) eV(-1) cm(-2). Furthermore, a high transition frequency of about 10 kHz was also observed under their accumulation mode. The results indicated that VOPc was a promising material and was suitable to be applied in active matrix liquid crystal displays and organic logic circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors investigated the switch-on transient properties of p-type vanadium phthalocyanine (VOPc) transistors, which were fabricated by weak epitaxy growth on ordered para-sexiphenyl (p-6P) layer. The overshoot phenomenon of drain current had been observed in the VOPc/p-6P transistors, which was explained by the filling of carriers in traps of organic films. The small overshoot value of about 35% and transient duration time of 2 ms demonstrated the low trap concentration in organic films, which were comparable to the reported hydrogenated amorphous-silicon thin-film transistors. Therefore, the VOPc/p-6P transistors can be applied in active matrix liquid crystal display as switch elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fabrication of ultrathin polymer composite films with low dielectric constants has been demonstrated. Octa( aminophenyl) silsesquioxane (OAPS) was synthesized and assembled with poly( acrylic acid) (PAA) and poly( styrene sulfonate) (PSS) via a layer-by-layer electrostatic self-assembly technique to yield nanoporous ultrathin films. The OAPS was soluble in water at pH 3 or lower, and suitable pH conditions for the OAPS/PAA and OAPS/PSS assemblies were determined. The multilayer formation process was studied by contact angle analysis, X-ray photoelectron spectroscopy, atomic force microscopy, quartz crystal microgravimetry, UV-vis spectroscopy, and ellipsometry. The multilayer growth was found to be steady and uniform, and the analysis of the film surface revealed a rough topography due to OAPS aggregates. The incorporation of porous OAPS molecules into the thin films significantly lowered their dielectric constants. The OAPS/PAA multilayer thin film thus prepared exhibited a dielectric constant of 2.06 compared to 2.58 for pure PAA film. The OAPS/PAA multilayer film was heated to effect cross-linking between the OAPS and the PAA layers, and the transformation was verified by reflection-absorption Fourier transform infrared spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic and conductive NiZn ferrite-polyaniline nanocomposites with novel core-shell structure have been fabricated by microemulsion process. The samples were characterized by XRD, TEM, SEM, IR, UV-vis, voltage/current detector and SQUID magnetometry. The core-shell structure of nanocomposites was observed by TEM. The changes of the magnetic and conductive properties after polyaniline coating were investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrokinetic models, namly the modified Avrami, Ozawa and Zibicki models, were applied to study the non-isothermal melt crystallization process of PET/PEN/DBS blends by DSC measurement. The modified Avrami model was found to describe the experimental data fairly well. With the cooling rates in the range from 5 to 20 K/min, Ozawa model could be well used to describe the early stages of crystallization. However, Ozawa model did not fit the polymer blends during the late stages of crystallization, because it ignored the influence of secondary crystallization. The crystallization ability of the blends decreases with increasing the DBS content from analysis by using Ziabicki kinetic model, which is similar to the results based on calculation of the effective energy barrier of the blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrooxidation of L-dopa at GC electrode was studied by in situ UV-vis spectroelectrochemistry (SEC) and cyclic voltammetry. The mechanism of electrooxidation and some reaction parameters were obtained. The results showed that the whole electrooxidation reaction of L-dopa at glassy carbon (GC) electrode was an irreversible electrochemical process followed by a chemical reaction in neutral solution (EC mechanism). The spectroelectrochemical data were treated by the double logarithm method together with nonlinear regression, from which the formal potential E-0 = 228 mV, the apparent electron-transfer number of the electrooxidation reaction an = 0.376 (R = 0.99, SD = 0.26), the standard electrochemical rate constant k(0) (3.93 +/- 0.12) x 10(-)4 cm s(-1) (SD = 1.02 x 10(-2)), and the formation equilibrium constant of the following chemical reaction k(c)= (5.38+/-0.34) x 10(-1) s(-1) (SD = 1.02 x 10(-2)) were also obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combination of in situ surface plasmon resonance (SPR) with electrochemistry was used to investigate the electrochemical doping/dedoping processes of anions on a polyaniline (PAn)-modified electrode. Electrochemical SPR characteristics of the PAn film before and after doping/dedoping were revealed. The redox transformation between the insulating leucoemeraldine, and the conductive emeraldine, corresponding to the doping/dedoping of anion, can lead to very distinct changes in both the resonance minimum angle and the shape of SPR curve. This is ascribed to the swelling/shrinking effect, and the change of the PAn film in the imaginary part of the dielectric constant resulted from the transition of the film conductivity. In situ recording the time evolution of reflectance change at a fixed angle permits the continuous monitoring of the kinetic processes of doping/dedoping anions. The size and the charge of anions, the film thickness, as well as the concentration of anions are shown to strongly influence the rate of ingress/egress of anions. The time differential of SPR kinetic curves can be well applied in the detecting electroinactive anion by flow injection analysis. The approach has higher sensitivity and reproducibility compared with other kinetic measurements, such as those obtained by amperometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secondary and tertiary or quaternary structural changes in hemoglobin (HB) during an electroreduction process were studied by in situ circular dichroism (CD) spectroelectrochemistry with a long optical path thin-layer cell. By means of singular value decomposition least-squares analysis, CD spectra in the far-UV region give two similar a components with different CD intensity, indicating slight denaturation in the secondary structures due to the electric field effect. CD spectra in the Soret band show a R --> T transition of two quaternary structural components induced by electroreduction of the heme, which changes the redox states of the center ion from Fe3+ to Fe2+ and the coordination number from 6 to 5. The double logarithmic analysis shows that electroreduction of hemoglobin follows a chemical reaction with R --> T transition. Some parameters in the electrochemical process were obtained: formal potential, E-0t = -0.167 V; electrochemical kinetic overpotential, DeltaE(0) = -0.32 V; standard electrochemical reaction rate constant, k(0) = 1.79 x 10(-5) cm s(-1); product of electron transfer coefficient and electron number, alphan=0.14; and the equilibrium constant of R --> T transition, K-c = 9.0.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method for fabrication of horseradish peroxidase biosensor has been developed by self-assembling gold nanoparticles to a thiol-containing sol-gel network. A cleaned gold electrode was first immersed in a hydrolyzed (3-mercaptopropyl)-trimethoxysilane (MPS) sol-gel solution to assemble three-dimensional silica gel, and then gold nanoparticles were chemisorbed onto the thiol groups of the sol-gel network. Finally, horseradish peroxidase (HRP) was adsorbed onto the surface of the gold nanoparticles. The distribution of gold nanoparticles and HRP was examined by atomic force microscopy (AFM). The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The performance and factors influencing the performance of the resulting biosensor were studied in detail. The resulting biosensor exhibited fast amperometric response (2.5 s) to H2O2. The detection limit of the biosensor was 2.0 mumol L-1, and the linear range was from 5.0 mumol L-1 to 10.0 mmol L-1. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combination of electrochemistry with surface plasmon resonance (SPR) has been used to characterize the growth of polyaniline (PAn) on a gold electrode surface during potential cycling. Potential-modulated SPR characteristics of the PAn film were also revealed. The potential switch between the oxidized and reduced states of PAn can lead to a large change of SPR response due to the variation in the imaginary part of the dielectric constant of PAn film resulting from the transition of the film in conductivity. The redox transition of the PAn film during potential cycling is very profitable to the SPR measurements. Two modes of SPR measurement, SPR angular scan (R-theta) and the time evolution of the reflectivity change at a fixed angle (R-t), were displayed to study the growth process of the PAn film. The angle shift of the resonance minimum recorded at each cathodic limit of cyclic potential scanning allows for the unambiguous measurement of the film growth. During cyclic potential scanning, the R-t curve was repeatedly modulated with the direction of the potential ramp as a result of the redox switch of the PAn film, and the amplitude of potential-modulated reflectivity change was well correlated with the cyclic number. The time differential of the R-t curve permits continuous monitoring of the film growth process. These results illustrate that the combined technique is suitable for studying the electropolymerization process of a conducting polymer.