298 resultados para Electric field effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using analytical expressions for the polarization field in GaN quantum dot, and an approximation by separating the potential into a radial and an axial, we investigate theoretically the quantum-confined Stark effects. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. The results show that the electron and hole energy levels and the optical transition energies can cause redshifts for the lateral electric field and blueshifts for the vertical field. The rotational direction of electric field can also change the energy shift.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-confined Stark effects in GaAs/AlxGa1-xAs self-assembled quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. In our calculation, the effect of finite offset, valence-band mixing, the effects due to the different effective masses of electrons and holes in different regions, and the real quantum dot structures are all taken into account. The results show that the electron and hole energy levels and the optical transition energies can cause blueshifts when the electric field is applied along the opposite to the growth direction. Our calculated results are useful for the application of hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots to photoelectric devices. (c) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the binding energy of a hydrogenic donor impurity in a rectangular parallelepiped-shaped quantum dot (QD) in the framework of effective-mass envelope-function theory using the plane wave basis. The variation of the binding energy with edge length, position of the impurity, and external electric field is studied in detail. A finite potential model is adopted in our calculations. Compared with the infinite potential model [C. I. Mendoza , Phys. Rev. B 71, 075330 (2005)], the following results are found: (1) if the impurity is located in the interior of the QD, our results give a smaller binding energy than the infinite potential model; (2) the binding energies are more sensitively dependent on the applied electric field in the finite potential model; (3) the infinite potential model cannot give correct results for a small QD edge length for any location of the impurity in the QD; (4) some degeneracy is lifted when the dot is no longer cubic. (C) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of an external electric field on the electronic structure of GaN nanowires, as well as GaAs nanowires for comparison, are investigated theoretically. It is found that there is an anti-crossing effect in GaN nanowires caused by a small electric field, the hole energy levels, hole wave functions, and optical oscillator strengths change dramatically when the radius (R) is around a critical radius (R-c), while this effect is absent in GaAs nanowires. When R is slightly smaller than R-c, the highest hole states are optically dark in the absence of the electric field, and a small electric field can change them to be optically bright, due to the coupling of hole states brought by the field. The Rashba spin-orbit effect is also studied. The electron Rashba coefficient alpha increases linearly with the electric field. While the hole Rashba coefficients beta do not increase linearly, but have complicated relationships with the electric field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical model accounting for the macropolarization effects in wurtzite III-V nitrides quantum wells (QWs) is presented. Energy dispersions and exciton binding energies are calculated within the framework of effective-mass theory and variational approach, respectively. Exciton-associated transitions (EATs) are studied in detail. An energy redshift as high as 450 meV is obtained in Al0.25GaN0.75/GaN QWs. Also, the abrupt reduction of optical momentum matrix elements is derived as a consequence of quantum-confined Stark effects. EAT energies are compared with recent photoluminescence (PL) experiments and numerical coherence is achieved. We propose that it is the EAT energy, instead of the conduction-valence-interband transition energy that is comparable with the PL energy. To restore the reduced transition rate, we apply an external electric field. Theoretical calculations show that with the presence of the external electric field the optical matrix elements for EAT increase 20 times. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-confined Stark effects in InAs/GaAs self-assembled quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated in the presence of perpendicular and parallel electric field. In our calculation, the effect of finite offset, valence band mixing, and strain are all taken into account. The results show that the perpendicular electric field weakly affects the electron ground state and hole energy levels. The energy levels are affected strongly by the parallel electric field. For the electron, the energy difference between the ground state and the first excited state decreases as electric field increases. The optical transition energies have clear redshifts in electric field. The theoretical results agree well with the available experimental data. Our calculated results are useful for the application of quantum dots to photoelectric devices. (C) 2000 American Institute of Physics. [S0021-8979(00)11001-7].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-confined Stark effects are investigated theoretically in GaAs/AlxGa1-xAs quantum wires formed in V-grooved structures. The electronic structures of the V-shaped quantum wires are calculated within the effective mass envelope function theory in the presence of electric field. The binding energies of excitons are also studied by two-dimensional Fourier transformation and variational method. The blue Stark shifts are found when the electric field is applied in the growth direction. A possible mechanism in which the blueshifts of photoluminescence peaks are attributed to two factors, one factor comes from the asymmetric structure of quantum wire along the electric field and another factor arises from the electric-field-induced change of the Coulomb interaction. The numerical results are compared with the recent experiment measurement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of doped fluorescent dye 4-(dicyanomethylene)-2-i-propyl-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTI) on the charge carrier injection, transport and electroluminescence (EL) performance in polyfluorene (PFO)-based polymer light-emitting diodes (PLEDs) were investigated by steady-state current-voltage (I-V) characteristics and transient EL measurements. A red EL from DCJTI was observed and the EL performance depended strongly on the DCJTI concentration. The analysis of the steady-state I-V characteristics at different DCJTI concentrations found that three regions was shown in the I-V characteristics, and each region was controlled by different processes depending on the applied electric field. The effect of the dopant concentration on the potential-barrier height of the interface is estimated using the Fowler-Nordheim model. The dopant concentration dependence of the current-voltage relationship indicated clearly the carrier trapping by the DCJTI molecules. The mobility in DCJTI: PFO changed significantly with the DCJTI concentration, and showed a nontrivial dependence on the doping level. The behavior may be understood in terms of the formation of an additional energy disorder due to potential fluctuation caused by the Coulomb interaction of the randomly distributed doping molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the electric dichroism of cetylpyridinium bromide (CPB) has been found and studied by spectroelectrochemistry with a long optical path length thin-layer cell (LOPTLC) for the first time. The CPB molecule with a long carbon chain and a polar pyridinium ring is anisotropic in molecular configuration or in polarizability. In the electric field of a thin-layer cell, the CPB molecule reorientates along the direction of the electric field and exhibits electric dichroism, which results in the increase of absorbance of CPB in the UV-vis range. By use of in situ measurement of spectroelectrochemistry, the order parameters of long molecular axis (S = 0.845) and short molecular axis (D = 0.155) and the angle between the long axis direction of the CPB molecule and the direction normal to the electrode surface (theta = 18-degrees 44') have been determined. These data were used to describe the state of arrangement of the molecules in the solution. The reorientation of CPB molecules is the result of the interaction between the anisotropic molecules and electric field. The effects of the concentration of CPB and of the applied electric field on the electric dichroism have been investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a fully anisotropic analysis of strip electric saturation model proposed by Gao et al. (1997) (Gao, H.J., Zhang, T.Y., Tong, P., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids, 45, 491-510) for piezoelectric materials. The relationship between the size of the strip saturation zone ahead of a crack tip and the applied electric displacement field is established. It is revealed that the critical fracture stresses for a crack perpendicular to the poling axis is linearly decreased with the increase of the positive applied electric field and increases linearly with the increase of the negative applied electric field. For a crack parallel to the poring axis, the failure stress is not effected by the parallel applied electric field. In order to analyse the existed experimental results, the stress fields ahead of the tip of an elliptic notch in an infinite piezoelectric solid are calculated. The critical maximum stress criterion is adopted for determining the fracture stresses under different remote electric displacement fields. The present analysis indicates that the crack initiation and propagation from the tip of a sharp elliptic notch could be aided or impeded by an electric displacement field depending on the field direction. The fracture stress predicted by the present analysis is consistent with the experimental data given by Park and Sun (1995) (Park, S., Sun, C.T., 1995. Fracture criteria for piezoelectric materials. J. Am. Ceram. Soc 78, 1475-1480).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An analytical-numerical method is presented for analyzing dispersion and characteristic surface of waves in a hybrid multilayered piezoelectric plate. In this method, the multilayered piezoelectric plate is divided into a number of layered elements with three-nodal-lines in the wall thickness, the coupling between the elastic field and the electric field is considered in each element. The associated frequency dispersion equation is developed and the phase velocity and slowness, as well as the group velocity and slowness are established in terms of the Rayleigh quotient. Six characteristic wave surfaces are introduced to visualize the effects of anisotropy and piezoelectricity on wave propagation. Examples provide a full understanding for the complex phenomena of elastic waves in hybrid multilayered piezoelectric media.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many experimental observations have shown that a single domain in a ferroelectric material switches by progressive movement of domain walls, driven by a combination of electric field and stress. The mechanism of the domain switch involves the following steps: initially, the domain has a uniform spontaneous polarization; new domains with the reverse polarization direction nucleate, mainly at the surface, and grow though the crystal thickness; the new domain expands sideways as a new domain continues to form; finally, the domain switch coalesces to complete the polarization reversal. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of the ferroelectric material and used to study the nonlinear constitutive behavior of a ferroelectric body in this paper. The principle of stationary total potential energy is put forward in which the basic unknown quantities are the displacement u(i), electric displacement D-i and volume fraction rho(I) of the domain switching for the variant I. The mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total potential energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion established by Hwang et al. [ 1]. Based on the domain switching criterion, a set of linear algebraic equations for determining the volume fraction rho(I) of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. If the volume fraction rho(I) of domain switching for each domain is prescribed, the unknown displacement and electric potential can be obtained based on the conventional finite element procedure. It is assumed that a domain switches if the reduction in potential energy exceeds a critical energy barrier. According to the experimental results, the energy barrier will strengthen when the volume fraction of the domain switching increases. The external mechanical and electric loads are increased step by step. The volume fraction rho(I) of domain switching for each element obtained from the last loading step is used as input to the constitutive equations. Then the strain and electric fields are calculated based on the conventional finite element procedure. The finite element analysis is carried out on the specimens subjected to uniaxial coupling stress and electric field. Numerical results and available experimental data are compared and discussed. The present theoretic prediction agrees reasonably with the experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The piezoelastodynamic field equations are solved to determine the crack velocity at bifurcation for poled ferroelectric materials where the applied electrical field and mechanical stress can be varied. The underlying physical mechanism, however, may not correspond to that assumed in the analytical model. Bifurcation has been related to the occurrence of a pair of maximum circumferential stress oriented symmetrically about the moving crack path. The velocity at which this behavior prevails has been referred to as the limiting crack speed. Unlike the classical approach, bifurcation will be identified with finite distances ahead of a moving crack. Nucleation of microcracks can thus be modelled in a single formulation. This can be accomplished by using the energy density function where fracture initiation is identified with dominance of dilatation in relation to distortion. Poled ferroelectric materials are selected for this study because the microstructure effects for this class of materials can be readily reflected by the elastic, piezoelectic and dielectric permittivity constants at the macroscopic scale. Existing test data could also shed light on the trend of the analytical predictions. Numerical results are thus computed for PZT-4 and compared with those for PZT-6B in an effort to show whether the branching behavior would be affected by the difference in the material microstructures. A range of crack bifurcation speed upsilon(b) is found for different r/a and E/sigma ratios. Here, r and a stand for the radial distance and half crack length, respectively, while E and a for the electric field and mechanical stress. For PZT-6B with upsilon(b) in the range 100-1700 m/s, the bifurcation angles varied from +/-6degrees to +/-39degrees. This corresponds to E/sigma of -0.072 to 0.024 V m/N. At the same distance r/a = 0.1, PZT-4 gives upsilon(b) values of 1100-2100 m/s; bifurcation angles of +/-15degrees to +/-49degrees; and E/sigma of -0.056 to 0.059 V m/N. In general, the bifurcation angles +/-theta(0) are found to decrease with decreasing crack velocity as the distance r/a is increased. Relatively speaking, the speed upsilon(b) and angles +/-theta(0) for PZT-4 are much greater than those for PZT-6B. This may be attributed to the high electromechanical coupling effect of PZT-4. Using upsilon(b)(0) as a base reference, an equality relation upsilon(b)(-) < upsilon(b)(0) < upsilon(b)(+) can be established. The superscripts -, 0 and + refer, respectively, to negative, zero and positive electric field. This is reminiscent of the enhancement and retardation of crack growth behavior due to change in poling direction. Bifurcation characteristics are found to be somewhat erratic when r/a approaches the range 10(-2)-10(-1) where the kinetic energy densities would fluctuate and then rise as the distance from the moving crack is increased. This is an artifact introduced by the far away condition of non-vanishing particle velocity. A finite kinetic energy density prevails at infinity unless it is made to vanish in the boundary value problem. Future works are recommended to further clarify the physical mechanism(s) associated with bifurcation by means of analysis and experiment. Damage at the microscopic level needs to be addressed since it has been known to affect the macrocrack speeds and bifurcation characteristics. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Attosecond-pulse extreme-ultraviolet (XUV) photoionization in a two-color laser field is investigated. Attosecond pulse trains with different numbers of pulses are examined, and their strong dependence on photoelectronic spectra is found. Single-color driving-laser-field-assisted attosecond XUV photoionization cannot determine the number of attosecond pulses from the photoelectronic energy spectrum that are detected orthogonally to the beam direction and the electric field vector of the linearly polarized laser field. A two-color-field-assisted XUV photoionization scheme is proposed for directly determining the number of attosecond pulses from a spectrum detected orthogonally. (C) 2005 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

强外加电场与大调制度在光折变效应的研究中已经得到了广泛应用。采用PDECOL算法, 严格求解光折变带输运方程, 得到外加电场时不同调制度下光折变晶体中随时间变化的空间电荷场、载流子浓度, 并讨论了外加电场对它们的影响。通过将物质方程与耦合波方程联立数值求解, 可得到光折变光栅形成过程中两波耦合增益系数以及光束条纹相位的变化。模拟结果表明, 在强外加电场作用下, 两束记录光之间的光强与相位耦合都得到了增强, 而原有的解析式忽视了强外加电场与大调制度对空间电荷场相位耦合的影响, 此时不再适用。同时发现折射率光