369 resultados para EU3
Resumo:
Ca2Al2SiO7:Eu3+ was prepared by the sol-gel method. Through the emission spectrum of Eu3+ ion, the fluorescence parameters such as Omega(i) (i = 2,4) and radiative transition probabilities of D-5(0)-F-7(j) were calculated. The Pb2+ ion with bigger radius has an effect on the fluorescence spectra of Eu3+ which can be explained by the structure of the matrix. Simultaneously, the energy transfers between mercury-like ions (Pb2+ and Bi3+) and Eu3+ ion were observed. The D-5(4) and D-5(2) energy levels of Eu3+ are the resonance ones for Pb2+ ion.
Resumo:
We report a method for estimating the positions of charge transfer (CT) bands in Eu3+-doped complex crystals. The environmental factor ( he) influencing the CT energy is presented. he consists of four chemical bond parameters: the covalency, the bond volume polarization, the presented charge of the ligand in the chemical bond, and the coordination number of the central ion. These parameters are calculated with the dielectric theory of complex crystals. The relationship between the experimental CT energies and calculated environmental factors was established by an empirical formula. The calculated values are in good agreement with the experimental results. Such a relationship was confirmed by detailed analysis. In addition, our method is also useful to predict the charge-transfer position of any other rare earth ion.
Resumo:
Memory effects in single-layer organic light-emitting devices based on Sm3+, Gd3+, and Eu3+ rare earth complexes were realized. The device structure was indium-tin-oxide (ITO)/3,4-poly(ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT)/Poly(N-vinyl carbazole) (PVK): rare earth complex/LiF/Ca/Ag. It was found experimentally that all the devices exhibited two distinctive bistable conductivity states in current-voltage characteristics by applying negative starting voltage, and more than 10(6) write-read-erase-reread cycles were achieved without degradation. Our results indicate that the rare earth organic complexes are promising materials for high-density, low-cost memory application besides the potential application as organic light-emitting materials in display devices.
Resumo:
Nanocrystalline CaWO4 and Eu3+ (Tb3+)-doped CaWO4 phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the Pechini sol-gel method, resulting in the formation of SiO2@CaWO4, SiO2@CaWO4:Eu3+/Tb3+, core-shell structured particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT-IR indicate that CaWO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the FESEM and TEM images. The PL and CL demonstrate that the SiO2@CaWO4 sample exhibits blue emission band WO42- with a maximum at 420 nm (lifetime = 12.8 mu s) originated from the 4 groups, while SiO2@CaWO4:Eu3+ and SiO2@CaWO4:Tb3+ show additional red emission dominated by 614 nm (Eu3+:D-5(0)-F-7(2) transition, lifetime = 1.04 ms) and green emission at 544 nm (Tb3+:D-5(4)-F-7(5) transition, lifetime = 1.38 ms), respectively.
Resumo:
X-1-y(2)SiO(5):Eu3+ and X-1-Y2SiO5:Ce3+ and/or Tb3+ phosphor layers have been coated on nonaggregated, monodisperse, submicron spherical SiO2 particles by a sol-gel process, followed by surface reaction at high temperature (1000 degrees C), to give core/shell structured SiO2@Y2SiO5:Eu3+ and SiO2@Y2SiO5:Ce3+/Tb3+ particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), TEM, photoluminescence (PL), low voltage cathodoluminescence (CL), and time-resolved PL spectra and lifetimes are used to characterize these materials. The XRD results indicate that X-1-Y2SiO5 layers have been successfully coated on the sur- face Of SiO2 particles, as further verified by the FESEM and TEM images. The PL and CL studies suggest that SiO2@Y2SiO5:Eu3+, SiO2@Y2SiO5:Tb3+ (or Ce3+/Tb3+), and SiO2@Y2SiO5:Ce3+ core/shell particles exhibit red (Eu3+, 613 rim: D-5(0)-F-7(2)), green (Tb3+, 542nm: D-5(4)-F-7(5)), or blue (Ce3+, 450nm: 5d-4f) luminescence, respectively. Pl, excitation, emission, and time-resolved spectra demonstrate that there is an energy transfer from Ce3+ to Tb3+ in the SiO2@Y2SiO5:Ce3+,Tb3+ core/shell particles.
Resumo:
Nanocyrstalline LaGaO3 and Dy3+- and Eu3+-doped LaGaO3 were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the samples. XRD reveals that the samples begin to crystallize at 900 degrees C and pure LaGaO3 phase can be obtained at 1000 degrees C. FE-SEM images indicate that the Dy3+- and Eu3+-doped LaGaO3 samples are both composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light and low voltage electron beams (1-5 kV), the undoped LaGaO3 sample shows a strong blue emission peaking at 433 nm, and the Dy3+- and Eu3+-doped LaGaO3 samples show their characteristic emissions of Dy3+ (F-4(9/2)-H-6(15/2) and F-4(9/2)-H-6(13/2) transitions) and Eu3+ (D-5(0,1,2)-F-7(1,2,3,4) transitions), respectively. The relevant luminescence mechanisms are discussed.
Resumo:
The interaction mechanism between Eu3+ and microperoxidase-II (MP-11) in the aqueous solution was investigated using the UV-vis absorption spectroscopy, cyclic voltammetry and electrospray ionization mass spectrometry. It was found that one Eu3+ ion can coordinate with two carboxyl oxygen of two propionic acid groups of the heme group in the MP-11 molecule, leading the increase in the nonplanarity of the porphyrin ring and exposure degree of Fe(III) in the heme group. Therefore, the reversibility of the electrochemical reaction and the electrocatalytic activity of MP-11 for the reduction of oxygen are increased.
Resumo:
Monodisperse, core-shell structured SiO2@Gd-2(WO4)(3):Eu3+ particles were prepared by the sol-gel method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, transmission electron microscopy, photoluminescence (PL) and low-voltage cathodoluntinescence (CL). PL and CL study revealed that the core-shell structured SiO2@Gd-2(WO4)(3):Eu3+ particles show strong red emission dominated by the D-5(0)-F-7(2) transition of Eu3+ at 615 nm with a lifetime of 0.89 ins. The PL and CL emission intensity can be tuned by the coating number of Gd-2(WO4)(3):Eu3+ phosphor layers on SiO2 particles, the size of the SiO2 core particles, and by accelerating voltage and the filament current, respectively.
Resumo:
A sol-gel technique was used to prepare Gd2Ti2O7:Eu3+-coated submicron silica spheres (SiO2@Gd2Ti2O7:Eu3+). The resulted SiO2@Gd2Ti2O7:Eu3+ core-shell particles were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive x-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, as well as kinetic decays. The XRD results demonstrate that the Gd2Ti2O7:Eu3+ layers begin to crystallize on the SiO2 spheres after annealing at 800 degrees C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size similar to 620 nm), non-agglomeration, and smooth surface. The thickness of the Gd2Ti2O7:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (60 nm for four deposition cycles). Under the irradiation of 310 nm ultraviolet, the SiO2@GdTi2O7:Eu3+ samples show strong emission of Eu3+.
Resumo:
A uniform nanolayer of europium-doped Gd2O3 was coated on the surface of preformed submicron silica spheres by a Pechini sol-gel process. The resulted SiO2@Gd2O3:Eu3+ core-shell structured phosphors were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays. The XRD results show that the Gd2O3:Eu3+ layers start to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. The core-shell phosphors possess perfect spherical shape with narrow size distribution (average size: 640 nm) and non-agglomeration. The thickness of the Gd2O3:Eu3+ shells on the SiO2 cores can be adjusted by changing the deposition cycles (70 nm for three deposition cycles). Under short UV excitation, the obtained SiO2@Gd2O3:Eu3+ particles show a strong red emission with D-5(0)-F-7(2) (610 nm) of Eu3+ as the most prominent group.The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.
Resumo:
SiO2@Gd2MoO6:EU3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy ITEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Gd2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrate that the Gd2MoO6:Eu3+ layers on the SiO2 spheres begin to crystallize after annealing at 600 degrees C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 600 nm), are not agglomerated, and have a smooth surface. The thickness of the Gd2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). The Eu3+ shows a strong PL luminescence (dominated by D-5(0)-F-7(2) red emission at 613 nm) under the excitation of 307 nm UV light.
Resumo:
Europium-doped nanocrystalline GdVO4 phosphor layers were coated on the surface of preformed submicron silica spheres by sol-gel method. The resulted SiO2@Gd0.95Eu0.05VO4 core-shell particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, low voltage cathodoluminescence (CL), time resolved PL spectra and kinetic decays. The XRD results demonstrate that the Gd0.95Eu0.05VO4 layers begin to crystallize on the SiO2 spheres after annealing at 600 C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have spherical shape, narrow size distribution (average size ca. 600 nm), non-agglomeration. The thickness of the Gd0.95Eu0.05VO4 shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). PL and CL show that the emissions are dominated by D-5(0)-F-7(2) transition of Eu3+ (618 nm, red).
Resumo:
(Y, Gd) BO3:Eu3+ particles coated with nano-hematite were prepared by a facile method I for example (humid) solid phase reaction at room temperature. The resulted hematite-coated (Y, Gd)BO3:Eu3+ particles were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) analysis, X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and photoluminescence spectra (PL). The SEM and EDS analyses indicate that the particles are coated with a very thin layer of iron oxide. XPS results further confirmed that the coating was hematite, and the coating thickness was in nanometer range. XRD patterns showed that either the hematite coating was too thin or the content of hematite was too small, so that the XRD cannot detect it. The emission spectra illustrate that the peak near 580 nm disappears due to the coating of iron oxide, and when the coating is very thin, the ratio of D-5(0)-> F-7(2) to D-5(2)-> F-7(1) of coated particles is higher than that of uncoated ones, which indicates that the color purity of the phosphor is increased by coating nano-hematite.
Resumo:
Rare-earth ion (Eu3+, Tb3+, Ce3+)- doped LaPO4 nanocrystalline thin films and their patterning were fabricated by a Pechini sol-gel process combined with soft lithography on silicon and silica glass substrates. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM), scanning electron microcopy (SEM), optical microscopy, absorption and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicate that the films begin to crystallize at 700 degreesC and the crystallinity increases with increasing annealing temperature. The morphology of the thin film depends on the annealing temperature and the number of coating layers. The 1000 degreesC annealed single layer film is transparent to the naked eye, uniform and crack-free with a thickness of about 200 nm and an average grain size of 100 nm. Patterned thin films with different strip widths ( 5 - 50 mm) were obtained by micromolding in capillaries ( soft lithography). The doped rare earth ions show their characteristic emission in the nanocrystalline LaPO4 films, i.e., Eu3+ D-5(0)-F-7(J) (J = 1, 2, 3, 4), Tb3+ D-5(3,4) - F-7(J) ( J = 6, 5, 4, 3, 2) and Ce3+ 5d-4f transition emissions, respectively. Both the lifetimes and the PL intensities of Eu3+ and Tb3+ increase with increasing annealing temperature, and the optimum concentrations for them were determined to be 5 mol% and 16 mol% of La3+ in LaPO4 thin films, respectively. An energy transfer phenomenon from Ce3+ to Tb3+ has been observed in LaPO4 nanocrystalline thin films, and the energy transfer efficiency depends on the doping concentration of Tb3+ if the concentration of Ce3+ is fixed.
Resumo:
Silicate oxyapatite La-9.33 (SiO6)(4)O-2:A (A = Eu3+, Tb3+ and/or Ce3+) phosphor films and their patterning were fabricated by a sol-gel process combined with soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, atomic force microscopy, optical microscopy and photoluminescence spectra, as well as lifetimes, were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800degreesC and the crystallinity increased with the increase in annealing temperatures. Transparent nonpatterned phosphor films were uniform and crack-free, which mainly consisted of rodlike grains with a size between 150 and 210 nm. Patterned thin films with different bandwidths (20, 50 mum) were obtained by the micromoulding in capillaries technique. The doped rare earth ions (Eu3+, Tb3+ and Ce3+) showed their characteristic emission in crystalline La-9.33(SiO6)(4)O-2 phosphor films, i.e. Eu3+ D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4), Tb3+ D-5(3,4)-F-7(J) (J = 3, 4, 5, 6) and Ce3+ 5d (D-2)-4f (F-2(2/5), F-2(2/7)) emissions, respectively. Both the lifetimes and PL intensity of the Eu3+, Tb3+ ions increased with increasing annealing temperature from 800 to 1100 degreesC, and the optimum concentrations for Eu3+, Tb3+ were determined to be 9 and 7 mol% of La3+ in La-9.33(SiO6)(4)O-2 films, respectively. An energy transfer from Ce3+ to Tb3+ was observed in the La-9.33(SiO6)(4)O-2:Ce, Tb phosphor films, and the energy transfer efficiency was estimated as a function of Tb3+ concentration.