200 resultados para ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY (ESI-MSn)
Resumo:
Studies of low-energy collision-induced dissociation and isotopic labeling on ionized tetrahydroimidazole-substituted methylene P-diketones by tandem mass spectrometry showed that their unimolecular fragmentations may involve the reactions of intermediate ion/neutral complexes and multistep rearrangements. The corresponding mechanisms were proved by semiemipirical calculations of PM3 and AM1 methods.
Resumo:
4 Belamcanda chinensis (L.) DC. Iris tectorum Maxim.Passiflora incarnate L.HPLC6861 43 Rhizoma Belamcandae531248iridal5,7,8,4--6-5,6--4--7-O--D-iridalL16-16-2-(E)-16-16-B3--16-iristectoroneLiristectoroneMAB97iridal186 ESI-MS-MS This dissertation is composed by four chapters. The first and second chapter reports the phytochemical investigation of three medicine plants, Belamcanda chinensis (L.)DC., Iris tectorum Maxim. and Passiflora incarnate L. Sixty eight different compounds were isolated and sixty one of them were identified. The third chapter described rapid ESI-MS-MS analysis of B. chinensis, I. tectorum, and P. incarnate. The forth part is a review about the progress of studies on the chemical constituents from Belamcanda chinensis and Iris species. Fifty-three compounds were isolated from Rhizoma Belamcandae, the rhizomes of B. chinensis by the methods of column chromatography (normal and reversed phase silica gel, Sephadex LH-20), preparative TLC and HPLC. On the basis of spectroscopic methods including IR, ESI-MS, 1-D and 2-D NMR, forty eight of them were identified as seventeen flavonoids, seventeen tritepenoids, one cumarin, five steroids and some benzene derivative etc. Among them, the structures of twelve new compounds were elucidated as 6-methoxy-5,7,8,4-tetrahydryoxyisoflavoe, 4-methoxy-5,6-dihydroxyisoflavone-7-O--D-glucopyranoside, iristectorene L, 16-methoxyisoiridogermanal, 16-dehydroxyisoiridogermanal, 2-(E)-16-dehydroxy isoiridogermanal, 16-dehydroxyiristectorene B, 3-acetyl-16-dehydroxyisoiridoger- manal, iristectorone L, iristectorone M, belamcandene A and belamcandene B. Last two new compounds are dimer of triterpenoids with a novel carbon skeleton. Beside the new compounds, nine known ones were isolated from this plant for the first time. Isolation of I. tectorum yielded seven compounds. On the basis of spectroscopic methods including ESI-MS, NMR and the comparison with authentic samples, three of them were determined as isoflavone, two of them were triterpenoids, and other two were -sitosterol and apocynin. All of them are known compounds except one of iridal type triterpenoid, 16-dehydroxyiristectorene B, which also obtained from B. chinensis as a new compound. Isolation of P. incarnate yielded eight compounds. Six of them were determined on the basis of spectroscopic methods including ESI-MS, NMR and the comparison with authentic samples. Four of them are flavone-C-gluconside, and two are steroids. The third chapter describes the tandem mass spectrometry (ESI-MS-MS) analysis of the isoflavonoids from B. chinensis and I. tectorum, as well as C-glycosyl-flavonoide from P. incarnate, in order to explore the rapid methodology of validating the quality of the herbs. In addition, the fractionation rules of some iosflavonoids and C-glycosyl-flavonoids were discussed. The fourth chapter summarizes the research development on chemistry and pharmacology of medicine plants of B.chinensis and Iris species.
Resumo:
The present work describes a liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method for rapid identification of phenylethanoid glycosides in plant extract from Plantago asiatica L. By using a binary mobile phase system consisting of 0.2% acetic acid and acetonitrile under gradient conditions, a good separation was achieved on a reversed-phase C-18 column. The [M-H](-) ions, the molecular weights, and the fragment ions of phenylethanoid glycosides were obtained in the negative ion mode using LC-ESI-MS. The identification of the phenylethanoid glycosides (peaks 1-3) in the extract of P. asiatica L. was based on matching their retention time, the detection of molecular ions, and the fragment ions obtained by collision-induced dissociation (CID) experiments with those of the authentic standards and data reported in the literature.
Resumo:
The hydrolysis of ginsenoside standards and the crude extracts of ginseng has been investigated at different pH values (2.4 - 11.2) using high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS). The experimental results indicated that the pH value of aqueous solutions is an important factor in changing the composition of ginsenosides. For (20S)-protopanaxadiol ginsenosides, ginsenosides with a large mass hydrolyzed to form hydrolysates (20S)-Rg(3) and (20R)-Rg(3) at pH 4.3. There were more hydrolyzed products observed at pH 3.3: (20S)-F-2, C-25,26 hydrated ginsenoside "C-Y-1" and "C-Y-2" (MW = 802 Da) accompanied with (20S)-Rg(3), (20R)-Rg(3). At pH 2.4, only (20R)-Rg(3), (20S)-F-2, a small quantity of (20S)-Rg(3) and three C-25,26 hydrated ginsenosides were obtained. For (20S)protopanaxatriol Re, no hydrolysates were observed at pH 4.3; it was hydrolyzed at pH 3.3 to form hydrolysates (20S)-Rg, (20R)Rg(2) and hydrated C-25,26 (MW = 802 Da) and at pH 2.4 only C-25,26 hydrated ginsenosides "C-Y-1" and "C-Y-2" (MW = 802 Da) were left in the solution. Similar hydrolysis reactions could be also observed for the crude extracts of ginseng. It showed that HPLC/ESI-MS is a fast and convenient method to study the hydrolysis of ginseng.
Resumo:
The positive- and negative-ion electrospray ionization mass spectra of beta-cyclodextrin-amino acids complexes in NH4Ac buffer have been reported in this paper. Compared with positive-ion ESI mass spectra of beta-cyclodextrin-amino acids complexes under the same condition, negative-ion mass spectra obtained for inclusion complexes of beta-cyclodextrin (CD) with tyrosine, phenylalanine and tryptophan, respectively, were completely dominated by deprotonated complex ions and [CD-H](-) ion which is the only daughter ion in collision-induced dissociation (CID) experiment of deprotonated complexes, The results indicated that the charged position for protonated and deprotonated complexes is different from each other. In addition, two complex ions for the same complex have similarly relative dissociation energies, which are higher than that of [CD+NH4](+), indicating that complexes observed in gasphase are not electrostatic adducts at all but complexes formed by hydrogen bonds.
Resumo:
A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of C-O bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted detzvatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono- 1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC) = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C-18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was < 10% of the expected concentration. Excellent linear responses were observed with coefficients of > 0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A rapid and sensitive method was developed and validated for the determination of MCYST (microcystin)-RR, -LR, and [Dha(7)] MCYST-LR in rat plasma by liquid chromatography-tandem mass spectrometry. The analytes were extracted from rat plasma by protein precipitation, followed by solid-phase extraction. Liquid chromatography with electrospray ionization mass spectrometry, operating in selected reaction monitoring (SRM) mode, was used to quantify MCYST-RR, -LR, and [Dha(7)] MCYST-LR in rat plasma. The recoveries for each analyte in rat plasma ranged from 70.8 to 88.7%. The calibration curve was linear within the range from 0.005 to 1.25 mu g mL(-1). The limit of detection were 1.4, 1.0, 0.6 ng mL(-1) for MCYST-RR, -LR, and [Dha(7)] MCYST-LR. The overall precision was determined on three different days. The values for within- and between-day precision in rat plasma were within 15%. This method was applied to the identification and quantification of microcystins in rat plasma with acute exposure of microcystins via intravenous injection.
Resumo:
In this report, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to study the binding interactions between calmodulin and two target peptides (melittin and substance P). Various matrix conditions were tested and the less acidic matrix DHAP and THAP were found to favor the survival of the intact calcium-calmodulin as well as the calmodulin-peptide complexes. However, the application of direct MALDI-MS to detect the intact complexes turned out to be very difficult due to the dissociation of the complexes and the formation of nonspecific aggregates. In contrast, the specific binding of the target peptides to calmodulin could be easily deduced using intensity-fading (IF) MALDI-MS. Compared with the nonbinding control, clear reduction in the ion abundances of the target peptides was observed with the addition of calmodulin.
Resumo:
The iridoid glycosides in crude and processed extracts from cornus officinals have been analyzed by high performance liquid chromatography-electrospray ionization mass spectrometry. Samples were analyzed by a reversed-phase C18 column using a binary eluent under gradient conditions. Seven iridoid glycosides could be separated and detected. The [M-H](-) ions of iridoid glycosides in the negative ion mode were observed, which reflect their molecule mass information. An in-source collision induced dissociation (in-source CID) experiment was carried out in order to identify the structures and to measure the contents of iridoid glycosides. The epimers were discovered in the experiment for the first time, namely 7 alpha-O-ethyl-morroniside and 7 beta-O-ethylmorroniside.
Resumo:
Oligonucleotide from SARS virus was selected as a target molecule in the paper. The noncovalent complexes of ginsenosides with the target molecule were investigated by electrospray ionization mass spectrometry. The effects of experimental conditions were examined firstly on the formation of noncovalent complexes. Based on the optimized experimental conditions, the interaction of different ginsenosides with the target molecule was researched, finding that the interaction orders are relative with the structure of aglycons, the length and terminal sugar types of saccharide chains in the ginsenosides. There are certain rules for the interaction between the ginsenosides and DNA target molecule. For different type ginsenosides, the interaction intensity takes the orders 20-S-protopanaxatriol > 20-S-protopanaxadiol, and panaxatriol ginsenosides > panaxadiol ginsenosides. For the ginsenosides with the same type aglycone, tri-saccharide chain > di-saccharide chain > tetra-saccharide chain and single-saccharide chain > panaxatriol. For the ginsenosides with the same tetra-saccharide chain, the ginsenosides with smaller molecule masses > the ginsenosides with larger molecule masses.