98 resultados para Deformable face mask


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavefront coding is a powerful technique that can be used to extend the depth of field of an incoherent imaging system. By adding a suitable phase mask to the aperture plane, the optical transfer function of a conventional imaging system can be made defocus invariant. Since 1995, when a cubic phase mask was first suggested, many kinds of phase masks have been proposed to achieve the goal of depth extension. In this Letter, a phase mask based on sinusoidal function is designed to enrich the family of phase masks. Numerical evaluation demonstrates that the proposed mask is not only less sensitive to focus errors than cubic, exponential, and modified logarithmic masks are, but it also has a smaller point-spread-function shifting effect. (C) 2010 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In two papers [Proc. SPIE 4471, 272-280 (2001) and Appl. Opt. 43, 2709-2721 (2004)], a logarithmic phase mask was proposed and proved to be effective in extending the depth of field; however, according to our research, this mask is not that perfect because the corresponding defocused modulation transfer function has large oscillations in the low-frequency region, even when the mask is optimized. So, in a previously published paper [Opt. Lett. 33, 1171-1173 (2008)], we proposed an improved logarithmic phase mask by making a small modification. The new mask can not only eliminate the drawbacks to a certain extent but can also be even less sensitive to focus errors according to Fisher information criteria. However, the performance comparison was carried out with the modified mask not being optimized, which was not reasonable. In this manuscript, we optimize the modified logarithmic phase mask first before analyzing its performance and more convincing results have been obtained based on the analysis of several frequently used metrics. (C) 2010 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wave-front coding is a well known technique used to extend the depth of field of incoherent imaging system. The core of this technique lies in the design of suitable phase masks, among which the most important one is the cubic phase mask suggested by Dowski and Cathey (1995) [1]. In this paper, we propose a new type called cubic sinusoidal phase mask which is generated by combing the cubic one and another component having the sinusoidal form. Numerical evaluations and real experimental results demonstrate that the composite phase mask is superior to the original cubic phase mask with parameters optimized and provides another choice to achieve the goal of depth extension. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the level-set method and the continuum interface model, the axisymmetric thermocapillary migration of gas bubbles in an immiscible bulk liquid with a temperature gradient at moderate to large Marangoni number is simulated numerically. Constant material properties of the two phases are assumed. Steady state of the motion can always be reached. The terminal migration velocity decreases monotonously with the increase of the Marangoni number due to the wrapping of isotherms around the front surface of the bubble. Good agreements with space experimental data and previous theoretical and numerical studies in the literature are evident. Slight deformation of bubble is observed, but no distinct influence on the motion occurs. It is also found that the influence of the convective transport of heat inside bubbles cannot be neglected at finite Marangoni number, while the influence of the convective transport of momentum inside bubbles may be actually negligible.