107 resultados para Coronarografia Imaging cardiaco CardioTC CardioRM Cuore
Resumo:
Many-beam dynamical simulations and observations have been made for large-angle convergent-beam electron diffraction (LACBED) imaging of crystal defects, such as stacking faults and dislocations. The simulations are based on a general matrix formulation of dynamical electron diffraction theory by Peng and Whelan, and the results are compared with experimental LACBED images of stacking faults and dislocations of Si angle crystals. Excellent agreement is achieved.
Resumo:
We report on the first study of N+ -implanted silicon on insulator by energy-filtered imaging using an Opton electron microscope CEM 902 equipped Castaing-Henry electron optical system as a spectrometer. The inelastic images, energy window set at DELTA-E = 16 eV and DELTA-E = 25 eV according to plasmon energy loss of crystal Si and of silicon nitride respectively, give much structure information. The interface between the top silicon layer and the upper silicon nitride layer can be separated into two sublayers.
Resumo:
Wavefront coding is a powerful technique that can be used to extend the depth of field of an incoherent imaging system. By adding a suitable phase mask to the aperture plane, the optical transfer function of a conventional imaging system can be made defocus invariant. Since 1995, when a cubic phase mask was first suggested, many kinds of phase masks have been proposed to achieve the goal of depth extension. In this Letter, a phase mask based on sinusoidal function is designed to enrich the family of phase masks. Numerical evaluation demonstrates that the proposed mask is not only less sensitive to focus errors than cubic, exponential, and modified logarithmic masks are, but it also has a smaller point-spread-function shifting effect. (C) 2010 Optical Society of America
Resumo:
Wave-front coding is a well known technique used to extend the depth of field of incoherent imaging system. The core of this technique lies in the design of suitable phase masks, among which the most important one is the cubic phase mask suggested by Dowski and Cathey (1995) [1]. In this paper, we propose a new type called cubic sinusoidal phase mask which is generated by combing the cubic one and another component having the sinusoidal form. Numerical evaluations and real experimental results demonstrate that the composite phase mask is superior to the original cubic phase mask with parameters optimized and provides another choice to achieve the goal of depth extension. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Wavefront coding can be used to extend the depth of field of incoherent imaging systems and is a powerful system-level technique. In order to assess the performance of a wavefront-coded imaging system, defocused optical transfer function (OTF) is the metric frequently used. Unfortunately, to the best of our knowledge, among all types of phase masks, it is usually difficult to obtain the analytical OTF except the cubic one. Although numerical computation seems good enough for performance evaluation, the approximate analytical OTF is still indispensable because it can reflect the relationship between mask parameters and system frequency response in a clearer way. Thus, a method is proposed to derive the approximate analytical OTF for two-dimensional rectangularly separable phase masks. The analytical results are well consistent with the direct numerical computations, but the proposed method can be accepted only from engineering point of view and needs rigorous proof in future. (c) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3485759]
Resumo:
(973 Program)No.2009CB724006.
Resumo:
We have optimized the settings of evanescent wave imaging for the visualization of a protein adsorption layer. The enhancement of the evanescent wave at the interface brought by the incident angle, the polarized state of light beam as well as a gold layer is considered. In order to improve the image contrast of a protein monolayer in experiments, we have optimized three factors-the incident angle, the polarization of light beam, and the thickness of an introduced thin gold layer with a theoretical simulation.
Resumo:
A novel method is reported for the detection of avian influenza virus subtype H5 using a biosensor based on high spatial resolution imaging ellipsometry (IE). Monoclonal antibodies specific to H5 hemagglutinin protein were immobilized on silicon wafers and used to capture virus particles. Resultant changes on the surface of the wafers were visualized directly in gray-scale on an imaging ellipsometry image. This preliminary study has shown that the assay is rapid and specific for the identification of avian influenza virus subtype H5. Compared with lateral-flow immunoassays, this biosensor not only has better sensitivity, but can also simultaneously perform multiplexed tests. These results suggest that this biosensor might be a valuable diagnostic toot for avian influenza virus detection. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The principle and technique details of recoil ion momentum imaging are discussed and summarized. The recoil ion momentum spectroscopy built at the Institute of Modern Physics (Lanzhou) is presented. The first results obtained at the setup are analyzed. For 30 keV He2+ on He collision, it is found that the capture of single electron occurs dominantly into the first excited states, and the related scattering angle results show that the ground state capture occurs at large impact parameters, while the capture into excited states occurs at small impact parameters. The results manifest the collision dynamics for the sub-femto-second process can be studied through the techniques uniquely. Finally, the future possibilities of applications of the recoil ion momentum spectroscopy in other fields are outlined.
Resumo:
In order to expand the solid angle for imaging of electrons in ion-atom collisions, we designed a complex Helmholtz coils composed of four single coils. Theoretical simulations were carried out to optimize the arrangement of the coils. The complex is constructed according to the theoretical analysis, and the magnetic fields were measured for interested regions. The measured results show that the relative uniformity of the magnetic fields is +/- 0.6%, which satisfies the requirements of collision experiments.
Resumo:
探测器位置分辨能力的高低是实现γ成像的一个重要指标.Segmented HPGe平面型位置灵敏探测器能够很好地给出γ射线与探测器晶体相互作用的作用点位置信息.利用由这种探测器组成的探测器阵列对~(22)Na标准源进行了γ成像实验.结果能够区分出标准源两个不同的摆放位置的细微差别,并与实际情况符合得很好.从而检验了Segmented HPGe平面型位置灵敏探测器的位置分辨能力.