152 resultados para Ceramic compositions
Resumo:
Stable deuterium (delta D) and oxygen-18 (delta O-18) isotopes in 1962 to 2002 precipitation from the seven Australian stations of the Global Network of Isotopes in Precipitation (GNIP) were used to investigate isotope characteristics including temporal and spatial distributions across different regions of Australia. On the basis of 1534 samples, the local meteoric water line (LMWL) was established as delta D = 7.10 delta O-18 + 8.21. delta O-18 showed a depletion trend from north and south to central Australia (a continental effect) and from west to east. Precipitation amount effects were generally greater than temperature effects, with quadratic or logarithmic correlations describing delta/T and delta/P better than linear relationships. Nonlinear stepwise regression was used to determine the significant meteorological control factors for each station, explaining about 50% or more of the delta O-18 variations. Geographical control factors for delta O-18 were given by the relationship delta O-18 (parts per thousand) = -0.005 longitude (degrees) - 0.034 latitude (degrees)-0.003 altitude (m) - 4.753. Four different types of d-excess patterns demonstrated particular precipitation formation conditions for four major seasonal rainfall zones. Finally, wavelet coherence (WTC) between delta O-18 and SOI confirmed that the influence of ENSO decreased from east and north to west Australia.
Resumo:
Immersion in various media has different effect on the properties of dental composites, such as sorption, solubility, elution of unreacted monomers, flexural strength, and flexural elastic modulus. In the present work, the effect of immersion in various media and the relationship between the variation of these properties and the components of dental composite were investigated.
Resumo:
Oxide ceramics with high sintering-resistance above 1473 K have very important applications in thermal barrier coatings (TBCs), catalytic combustion and high-temperature structural materials. Lanthanum zirconate (La2Zr2O7, LZ) is an attractive TBC material which has higher sintering-resistance than yttria stabilized zirconia (YSZ), and this property could be further improved by the proper addition of ceria.
Resumo:
La2Zr2O7 (LZ) is a promising thermal barrier coating material for the high-temperature applications, which could be significantly toughened by the BaTiO3 piezoelectric phase incorporated into the matrix. The composites of xBaTiO(3)/(l-x)LZ (x=5, 10, 15, 20 vol%, LZ-x-BaTiO3) were densified by means of high-pressure sintering (HPS) under a pressure of 4.5 GPa at 1450 degrees C for 10 min, by which a high relative density above 93% could be obtained.
Resumo:
Double-ceramic-layer(DCL) thermal barrier coatings (TBCs) of La2Zr2O7 (LZ) and yttria stabilized zirconia (YSZ) were deposited by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, surface and cross-sectional morphologies and cyclic oxidation behavior of the DCL coating were studied. Both the X-ray diffraction (XRD) and thermogravimetric-differential thermal analysis (TG-DTA) prove that LZ and YSZ have good chemical applicability to form a DCL coating. The thermal cycling test at 1373 K in an air furnace indicates the DCL coating has a much longer lifetime than the single layer LZ coating. and even longer than that of the single layer YSZ coating. The failure of the DCL coating is a result of both the bond coat oxidation and the thermal strain between bond coat and ceramic layer generated by the thermal expansion mismatch.
Resumo:
SiO2-CaO-P2O5 ternary bioactive glass ceramic nanoparticles were prepared via the combination of sol-gel and coprecipitation processes. Precursors of silicon and calcium were hydrolyzed in acidic solution and gelated in alkaline condition together with ammonium dibasic phosphate. Gel particles were separated by centrifugation, followed by freeze drying, and calcination procedure to obtain the bioactive glass ceramic nanoparticles. The investigation of the influence of synthesis temperature on the nanopartilce's properties showed that the reaction temperature played an important role in the crystallinity of nanoparticle. The glass ceramic particles synthesized at 55 degrees C included about 15% crystalline phase, while at 25 degrees C and 40 degrees C the entire amorphous nanopowder could be obtained.
Resumo:
The sol-gel-derived ceramic-carbon nanotube (SGCCN) nanocomposite film fabricated by doping multiwall carbon nanotubes (MWNTs) into a silicate get matrix was used to immobilize protein. The SGCCN film can provide a favorable microenvironment for horseradish peroxidase (HRP) to perform direct electron transfer (DET) at glassy carbon electrode. The HRP immobilized in the SGCCN film shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity to the reduction of O-2 and H2O2, which is superior to that immobilized in silica sol-gel film.
Resumo:
Electrospinning was employed to fabricate polymer-ceramic composite fibers from solutions containing poly(vinyl pyrrolidone) (PVP), Ce(NO3)(3)(.)6H(2)O and ZrOCl2-8H(2)O. Upon firing the composite fibers at 1000 degrees C, Ce(0.67)Zr(0.33)O(2)fibers with diameters ranging from 0.4 to 2 mu m were synthesized. These fibers exhibit strong resistance to sintering. They still have specific surface area around 11.8 m(2)/g after being heated at 1000 degrees C for 6 h.
Resumo:
Electrospinning was employed to fabricate polymer-ceramic composite fibers from solutions containing polyvinyl pyrrolidone (PVP) and In(NO3)(3)center dot 4(1)/2H2O. Upon firing the composite fibers at 800 degrees C, In2O3 fibers with diameters ranging from 200 to 400 nm were synthesized. This indium oxide calcined at 800 degrees C is a body-centered cubic cell. The photoluminescence (PL) properties of the as-formed In2O3 nanofibers were investigated. The In2O3 nanofibers show a strong PL emission in the ultraviolet (UV) region under shorter UV light irradiation.
Resumo:
This paper summarizes the basic properties of ceramic materials for thermal barrier coatings. Ceramics, in contrast to metals, are often more resistant to oxidation, corrosion and wear, as well as being better thermal insulators. Except yttria stabilized zirconia, other materials such as lanthanum zirconate and rare earth oxides are also promising materials for thermal barrier coatings.
Resumo:
Ceramic carbon materials were developed as new sorbents for solid-phase extraction of organic compounds using chlorpromazine as a representative. The macroporosity and heterogeneity of ceramic carbon materials allow extracting a large amount of chlorpromazine over a short time. Thus, the highly sensitive and selective determination of chlorpromazine in urine sample was achieved by differential pulse voltammograms after only 1-min extraction. The total analysis time was less than 3 min. In comparison with other electrochemical and electrochemi-luminescent methods following 1-min extraction, the proposed method improved sensitivity by about 2 and 1 order of magnitude, respectively. The fast extraction, diversity, and conductivity of ceramic carbon materials make them promising sorbents for various solid-phase extractions, such as solid-phase microextraction, thin-film microextraction, and electrochemically controlled solidphase extraction. The preliminary applications of ceramic carbon materials in chromatography were also studied.
Resumo:
A sensitive electrochemiluminescent detection scheme by solid-phase extraction at Ru(bpy)(3)(2+)-modified ceramic carbon electrodes (CCEs) was developed. The as-prepared Ru(bpy)(3)(2+)-modified CCEs show much better long-term stability than other Nafion-based Ru(bpy)(3)(2+)-modified electrodes and enjoy the inherent advantages of CCEs. The log-log calibration plot for dioxopromethazine is linear from 1.0 x 10(-9) to 1.0 x 10(-4) mol L-1 using the new detection scheme. The detection limit is 6.6 x 10(-10) mol L-1 at a signal-to-noise ratio of 3. The new scheme improves the sensitivity by similar to 3 orders of magnitude, which is the most sensitive Ru(bpy)(3)(2+) ECL method. The scheme allows the detection of dioxopromethazine in a urine sample within 3 min. Since Ru(bpy)(3)(2+) ECL is a powerful technique for determination of numerous amine-containing substances, the new detection scheme holds great promise in measurement of free concentrations, investigation of protein-drug interactions and DNA-drug interactions, pharmaceutical analysis, and so on.
Resumo:
A new carbon composite electrode material, based on dispersing glassy carbon (GC) microparticles into methyltrimethoxysilane-derived sol, is described in the present paper. The resulting glassy carbon ceramic composite electrodes (GCCEs) combine the electrochemical properties of GC with the advantages of composite electrodes, and thus offer high electrochemical reactivity, low background current and are easy to prepare, modify and renew. The new material has a low double-layer capacitance and a wide potential window. Scanning electron microscopy (SEM) images indicate significant difference in the structure of GCCE and carbon ceramic composite electrode (CCE). The electrochemical properties and advantages of GCCE should find broad utility in electroanalysis.