193 resultados para Biodegradable composites
Resumo:
We synthesized methoxy poly(ethylene glycol)-b-poly(alpha,L-glutamic acid) (mPEGGA) diblock copolymer by ring-opening polymerization of N-carboxy anhydride of gamma-benzyl-L-glutamate (NCA) using amino-terminated methoxy polyethylene glycol (mPEG) as macroinitiator. Polyelectrolyte complexation between mPEGGA as neutral-block-polyanion and chitosan (CS) as polycation has been scrutinized in aqueous solution as well as in the solid state.
Resumo:
1D Co/CoFe2O4 composites with tunable morphologies were fabricated by a facile solvothermal route in the presence of a surfactant poly(vinylpyrrolidone) (PVP); they may be very attractive for potential applications because of their outstanding soft magnetism.
Resumo:
Opened hollow microspheres of organoclays were prepared via spray drying the suspension of modified Na+-montmorillonite (Na+-MMT) with alkylsulfonate. The microstructure and thermal properties of these opened hollow spheres were characterized by means of wide-angle X-ray diffraction, field emission scanning electron microscopy, and thermogravimetric analysis. The results showed that the organoclays had larger interlayer spacing compared with pure Na+-MMT and higher thermal stability relative to the alkylsufonate.
Resumo:
Novel bioactive glass (13G) nanoparticles/poly(L-lactide) (PLLA) composites were prepared as promising bone-repairing materials. The BG nanoparticles (Si:P:Ca = 29:13:58 weight ratio) of about 40 run diameter were prepared via the sol-gel method. In order to improve the phase compatibility between the polymer and the inorganic phase, PLLA (M-n = 9700 Da) was linked to the surface of the BG particles by diisocyanate. The grafting ratio of PLLA was in the vicinity of 20 wt.%. The grafting modification could improve the tensile strength, tensile modulus and impact energy of the composites by increasing the phase compatibility.
Resumo:
A new biodegradable amphiphilic block copolymer, poly(ethylene glycol)-b-poly(L-factide-co-9-phenyl-2,4,8, 10-tetraoxaspiro[5,5]undecan-3-one) [PEG-b-P(LA-co-PTO)], was successfully prepared by ring-opening polymerization (ROP) Of L-lactide (LA) and functionalized carbonate monomer 9-phenyl-2,4,8,10-tetraozaspiro[5,5]undecan-3-one (PTO) in the presence of monohydroxyl poly(ethylene glycol) as macroinitiator using Sn(Oct)(2) as catalyst. NMR, FT-IR, and GPC studies confirmed the copolymer structure.
Resumo:
To obtain one biodegradable and electroactive polymer as the scaffold for tissue engineering, the multiblock copolymer PLAAP was designed and synthesized with the condensation polymerization of hydroxyl-capped poly(L-lactide) (PLA) and carboxyl-capped aniline pentamer (AP). The PLAAP copolymer exhibited excellent electroactivity, solubility, and biodegradability. At the same time, as one scaffold material, PLAAP copolymer possesses certain mechanical properties with the tensile strength of 3 MPa, tensile Young 's modulus of 32 MPa, and breaking elongation rate of 95%.
Resumo:
Novel biodegradable poly(carbonate ester)s with photolabile protecting groups were synthesized by ring-opening copolymerization Of L-lactide (LA) with 5-methyl-5-(2-nitro-benzoxycarbonyl)-1,3-dioxan-2-one (MNC) with diethyl zinc (Et2Zn) as catalyst. The poly(L-lactide-co-5-methyl-5-carboxyl-1,3-dioxan-2-one) (P(LA-co-MCC)) was obtained by UV irradiation Of poly(L-lactide acid-co-5-methyl-5-(2-nitro-benzoxycarbonyl)-1,3-dioxan-2-one) (P(LA-co-MNC)) to remove the protective 2-nitrobenzyl group.
Resumo:
A facile and efficient method to immobilize bioactive proteins onto polymeric substrate was established. Testis-specific protease 50 (TSP50) was immobilized on ultrafine biodegradable polymer fibers, i.e., (1) to prepare a propargyl-containing polymer P(LA90-co-MPCIO) by introducing propargyl group into a cyclic carbonate monomer (5-methyl-5-propargyloxycarbonyl-1,3-dioxan2-one, MPC) and copolymerizing it with L-lactide; (2) to electrospin the functionalized polymer into ultrafine fibers; (3) to azidize the TSP50, and (4) to perform the click reaction between the propargyl groups on the fibers and the azido groups on the protein.
Resumo:
A novel biodegradable diblock copolymer, poly(L-cysteine)-b-Poly(L-lactide) (PLC-b-PLLA), was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of beta-benzyloxycarbonyl-L-Cysteine (ZLC-NCA) with amino-terminated Poly(L-lactide) (NH2-PLLA) as a macroinitiator in a convenient way. The diblock copolymer and its precursor were characterized by H-1 NMR, Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS) measurements. The length of each block polymer could be tailored by molecular design and the ratios of feeding monomers.
Resumo:
A diblcok copolymer monomethoxy poly (ethylene glycol)-block-poly(L-lactide-co-2-methyl-2-carboxyl-propylene carbonate) (MPEG-b-P(LA-co-MCC)) was obtained by copolymerization of L-lactide (LA) and 2-methyl-2-benzoxycarbonyl-propylene carbonate (MBC) and subsequent catalytic hydrogenation. The pendant carboxyl groups of the copolymer MPEG-b-P(LA-co-MCC) were conjugated with antitumor drug docetaxel and tripeptide arginine-glycine-aspartic acid (RGD), respectively.
Resumo:
A novel glucose biosensor based on immobilization of glucose oxidase (GOD) in thin films of polyethylenimine-functionalized ionic liquid (PFIL), containing a mixture of carbon nanotubes (CNT) and gold nanoparticles (AuNPs) and deposited on glassy carbon electrodes, was developed. Direct electrochemistry of glucose oxidase in the film was observed, with linear glucose response up to 12 mM. The PFIL-stabilized gold nanoparticles had a diameter of 2.4 +/- 0.8 nm and exhibited favorable stability (stored even over one month with invisible change in UV-vis spectroscopic measurements).
Resumo:
Horseradish peroxidase (HRP) was incorporated into multiwalled carbon nanotube/thionine/Au (MTAu) composite film by electrostatic interactions between positively charged HRP and negatively charged MTAu composite. The results of electrochemical impedance spectroscopy (EIS) confirmed adsorption of HRP on the surface of MTAu modified GC electrode.
Resumo:
Ti40Cu40Ni10Zr10-xScx (x = 0.5 and 1, at%) alloys were prepared by copper mould casting method. Microstructures of the phi 3 mm rod alloys were investigated by XRD and SEM. The results showed that the phi 3 mm rods were glassy matrix with TiCu crystalline phase. Mechanical properties were studied by compressive test. Ti40Cu40Ni10Zr9Sc1 alloy exhibited good compressive strength over 2200 MPa and superior compressive deformation is about 7.9%.
Resumo:
A new kind of polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5 -(4',7'-di-2-thienyl-2',1',3',-benzothiadiazole) (PFDTBT), was prepared. The introduction of ZnO nanoparticles with perfect wurtzite crystal character into PFDTBT makes the resulted single-layer photovoltaic device to perform a significant photovoltaic response. Among the tested devices, the best performance is observed for that containing 60 wt% of ZnO nanoparticles, which has a photocurrent density of 1.17 mu A/cm(2), an open circuit voltage of 0.81 V. a fill factor of 0.09 and a power conversion efficiency of 0.009%. The results show that the polyfluorene derivatives/ZnO nanoparticles hybrid composites are excellent fluorescence and photovoltaic materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Effects of organically modified montmorillonites (OMMTs) with different type and amount of modifiers on flame retardancy of polystyrene (PS) have been studied. The results from morphology analysis, gas chromatography-mass spectrometry and cone calorimeter have showed different mechanisms for the flame retardancy of PS/OMMTs composites, depending on surface property of OMNTrs. One is the catalysis of acid sites formed on the surface of octadecylammonium modified MMT (c-MMT) via Hoffman decomposition on the carbonization of degradation products, which promotes the formation of clay-enriched char barrier.