166 resultados para BLOOD CENTER
Resumo:
Oriented crystallization of CUSO4 center dot 5H(2)O on a Langmuir-Blodgett (LB) film of stearic acid has been studied in the temperature ranges of 73-68 degrees C and 53-20 degrees C, respectively. This is the first time that the LB film at temperature above its melting point has been served as a template to induce nucleation and growth of crystals. The experimental results demonstrated that the LB film in the liquid state has the ability of directing the nucleation and growth of crystals. Moreover, X-ray diffraction patterns of the as prepared crystals revealed that the orientation of the attached crystals on the LB film is affected by temperature greatly.
Resumo:
A new polyoxotungstate complex [Na-2(H2O)(8)][Na-8(H2O)(20)][Cu(en)(2)][W12O42] center dot 3 H2O (1) (en = ethylenediamine) has been synthesized in aqueous solution and characterized by elemental analysis, IR spectroscopy and TG analysis, together with a single crystal X-ray diffraction study. In compound 1, the Cu(en)(2)(2+) complex cation links the [W12O42](12-) anions to form a I D chain, and the ID chains are further interconnected with Na-8(H2O)(20)(8+) and Na-2(H2O)(8)(2+) cations to construct a new 3D framework.
Resumo:
The electrochemical properties of a series of structurally related fullerooxazoles, [6,6] cyclic phenylimidate C-60 (1), 1,2-benzal-3-N-4-O-cyclic phenylimidate C-60 (2), and 1,4-dibenzyl-2,3-cyclic phenylimidate C-60 (3), are described, and the spectroscopic characterizations of their anionic species are reported. The results show that compounds I and 2 undergo retro-cycloaddition reactions that lead to the formation of C-60 and C61HPh, respectively, upon two-electron-transfer reduction. However, compound 3 demonstrates much more electrochemical stability as no retro-cycloaddition reaction occurs under similar conditions. Natural bond orbital (NBO) calculations on charge distribution show there is no significant difference among the dianions of 1, 2, and 3, indicating that the electrochemical stability of 3 is unlikely to be caused by the charge distribution difference of the dianions of three compounds. Examination on the crystal structure of compound 3 reveals close contacts of the C-H group with the heteroatoms (N and O) of cyclic phenylimidate, suggesting the existence of C-H center dot center dot center dot X (X = N, O) intramolecular hydrogen bonding among the addends, which is further confirmed by NBO analysis.
Resumo:
We have demonstrated a fully covalent, signal-on E-DNA architecture based on the target-induced resolution of a DNA pseudokont. In the absence of target, the electrode-bound DNA probe adopts a pseudoknot conformation that segregates an attached methylene blue (MB) from the electrode. Upon target binding, the pseudoknot is resolved, leading to the formation of a single-stranded DNA element that supports electron transfer from the methylene blue to the electrode.
Resumo:
A new polyoxometalate [Co(phen)(3)](2)[HPMo4V Mo-4(VI) V-6(IV) M2O44]center dot 4H(2)O (M = 0.78Mo(V)+ 0.22V(IV)) 1 was hydrothermally synthesized and characterized by IR, elemental analyses, X-ray photoelectron spectrum, ESR and single crystal X-ray diffraction. The title compound is in the triclinic space group P (1) over bar with a = 12.0953(7) angstrom, b = 14.0182(6) angstrom, c = 14.6468(7) angstrom, V=2402.55(18) angstrom(3), alpha = 105.134(2), beta = 91.841(3), gamma = 91.401(2), Z = 1, and R-1 (wR(2)) = 0.0617 (0.1701). The compound was prepared from tetra-capped pseudo-Kepin with phosphorus-centered polyoxoanions [PMo8V6M2O44](5-) , [Co(phen)(3)](2+) cations and linked through hydrogen bonds and pi-pi stacking interaction into three-dimensional supramolecular framework. Astudy of the magnetic properties of 1 demonstrates that it exhibits antiferromagnetic coupling interactions.
Resumo:
Reaction of 2,6-pyridinedicarboxylic with CoCl2 . 6H(2)O in aqueous solution give rise to a three-dimensional Complex CO2(2,6-DPC)(2)Co(H2O)(5).2H(2)O (DPC = 2,6-pyridinedicarboxylate) 1. It has been characterized by elemental analyses, infrared spectra (IR) spectrum, thermogravimetric (TG) analysis, EPR spectrum, and single crystal X-ray diffraction. The complex crystallizes in the P2(1)/c space group with a = 8.3906(3) Angstrom, b = 27.4005(8) Angstrom, c = 9.6192(4) A, alpha = 90.00degrees, beta = 98.327(2)degrees, gamma = 90.00degrees, V = 2188.20(14) Angstrom(3), Z = 4. There are two types of cobalt environments: Co(1) is coordinated by four oxygen atoms from four carboxyl groups and two nitrogen 2 atoms which are all from pdc(2). Co(2) is coordinated by six oxygen atoms, five from coordinated water molecules and one from a carboxyl of pdc(2) - of which the other oxygen atom is linked to the Co(1). The extensive intermolecular hydrogen bonds are formed in the crystal by means of the five coordinated water molecules.
Resumo:
The crystal structures of EtEDTB.1.4C(2)H(5)OH.5H(2)O 1 and H4EtEDTB(ClO4)(4).C2H5OH 2 (EtEDTB = N, N,N',N'-tetrakis[2-(1-ethylbenzimidazolyl)methyl]-1,2-ethanediamine) have been determined by single-crystal X-ray diffraction method. Compound 1 crystallizes in the space group P(1) over bar with a = 11.489(2), b = 11.866(3), c = 12.002(3) Angstrom, alpha = 97.47(2), beta = 114.564(13), gamma = 114.11(2)degrees, V = 1266.6(5) Angstrom(3), Z = 1, M-r = 847.48, D-c = 1.111 g/cm(3), F(000) = 456 and mu(MoKalpha) = 0.076 mm(-1). A total of 5207 reflections were measured for 1, of which 4323 were independent. The structure of 1 was solved by direct methods and refined by full-matrix least-squares technique to the final R = 0.0706 and wR = 0.1802 for 1318 observed reflections with I > 2sigma(I). In the structure of 1, centrosymmetric EtEDTB molecules are linked by hydrogen bonds through water and ethanol to form 2-dimensional network. Compound 2 crystallizes in the space group C2/c with a = 24.260(5), b = 13.040(3), c = 17.680(4) Angstrom, beta = 97.50(3)degrees, V = 5545.2(2) Angstrom(3), Z = 4, M-r = 1140.80, D-c = 1.366 g/cm(3), F(000) = 2384 and mu(MoKalpha) = 0.289 mm(-1).
Resumo:
Reactions of freshly prepared M(OH)(2-2x)(CO3)(x) (.) yH(2)O (M = Mn, Zn) and 4,4'-bipyridine (bpy) with succinic acid (H2L) or famaric acid (H2L') in CH3OH-H2O afforded [Mn(H2O)(4)(bpy)]L (.) 4H(2)O, 1, [Mn(H2O)(4)(bpy)]L' (.) 4H(2)O, 2 and [Zn(H2O)(4)(bpy)]L (.) 4H(2)O, 3. The three coordination polymers are isostructural and consist of (1)(infinity)[M(H2O)(4)(bpy)(2/2)](2+) cationic chains, crystal H2O molecules and dicarboxylate anions (succinate or fumarate anions). Within the chains, the metal atoms are each octahedrally coordinated by four aqua oxygen atoms and two pyridyl nitrogen atoms from two 4,4'-bipyridine ligands. The crystal H2O molecules are hydrogen bonded to dicarboxylate anions to form ribbon-like anionic chains. The cationic and anionic chains are interconnected via hyqrogen bonds to generate a 3D network. Crystal data: 1 triclinic, P (1) over bar, a = 7.235(1), b = 7.749(2), c = 10.020(2) Angstrom, alpha = 79.95(3), beta = 88.79(3), gamma = 71.39(3)degrees, V = 523.9(2) Angstrom(3) and D-cal = 1.494 g cm(-3) for Z = 1; 2 triclinic, P (1) over bar, a = 7.127(1), b = 7.800(2), c = 9.945(2) Angstrom, alpha = 80.26(3), beta = 87.86(3), gamma = 72.69(3)degrees, V = 520.2(2) Angstrom(3) and D-cal = 1.498 g cm(-3) for Z = 1; 3 triclinic, P (1) over bar, a = 7.189(1), b = 7.764(2), c = 9.843(2) Angstrom, alpha = 79.16(3), beta = 87.80(3), gamma = 71.29(3)degrees, V = 510.9(2) Angstrom(3) and D-cal = 1.559 g cm(-3) for Z = 1.
Resumo:
The ultrathin multilayer films of sphere-shaped polyoxomolybdate Mo8V2O28.7H(2)O (abbreviated to Mo8V2) and poly(allylamine hydrochloride) (DAH) have been prepared by the layer-by-layer (LbL) self-assembly method. The (Mo8V2/DAH)(m) multilayer films have been characterized by X-ray photoelectron spectra (XPS) and atomic force microscopy (AFM). The electrochemistry behavior of the film at room temperature was investigated.
Resumo:
Single-crystalline C-60 center dot 1m-xylene nanorods with a hexagonal structure were successfully synthesized by evaporating a C-60 solution in m-xylene at room temperature. The ratio of the length to the diameter of the nanorods can be controlled in the range of approximate to 10 to over 1000 for different applications. The photoluminescence (PL) intensity of the nanorods is about 2 orders of magnitude higher than that for pristine C-60 crystals in air. Both UV and Raman results indicate that there is no charge transfer between C-60 and m-xylene. It was found that the interaction between C-60 and m-xylene molecules is of the van der Waals type. This interaction reduces the icosahedral symmetry of C-60 molecule and induces strong PL from the solvate nanorods.
Resumo:
A chain coordination polymer with the chemical formula {[Cu4L2(H2O)] (.) H2O)(n), has been synthesized by the assembly reaction of K(2)CuL(.)1.5H(2)O and Cu(OAC)(2)(H2O)-H-. with a 1:1 mole ratio in methanol., where H4L=2-hydroxy-3-[(E)-({2-[(2-hydroxybenzoyl)imino]ethyl I imino)methyl] benzoic acid, OAC(-) = CH3COO-. The crystal structure was determined by single-crystal X-ray diffraction analysis, the compound has chain molecular structure formed by dissymmetrical tetranuclear units. The magnetic measurements showed that Cu-Cu of the complex exhibit antiferromagnetic interactions, and satisfactory fittings to the observed magnetic susceptibility data were obtained by assuming a binuclear system, and further using molecular field approximation to deal with magnetic exchange interactions between binuclear systems.
Resumo:
Copper-zinc heterometallic 1D chain coordination polymer has been synthesized and characterized by elemental analysis, and IR spectra etc. The crystal structure was determined by single-crystal X-ray diffraction analyses. The title complex is 1 D chain coordination polymer with the chemical formula {[CuLZn center dot CuLZn(H2O)]center dot H2O}(n), where H4L=N-(2-hydroxybenzamido)-N'-(3-carboxylsalicylidene)ethylenediamine. Its structural unit is comprosed of two tetranuclear cycles formed by two dissymmetrical tetranuclear units. These units polymerized each other to form 1 D chain coordination polymer.
Resumo:
A copper-strontium heterometallic coordination polymer was synthesized and characterized by elemental analysis and IR spectra. The crystal structure was determined by single-crystal X-ray diffraction analyses. The title complex is a 2 D coordination polymer with the chemical formula [[(CuL)(2)Sr (H2O) center dot Sr-2 ((HO)-O-2)(7)]center dot 2H(2)O center dot 0.5CH(3)OH](n), where H4L = N-(2-hydroxybenzamido)-N'-(3-carboxylsalicylidene) ethylenediamine. Its structural unit is comprised of two adjacent units, which polymerized with each other to form a new layered heterometallic coordination polymer.
Resumo:
The speciation and distribution of Zn(II) and the effect of Gd(III) on Zn(II) speciation in human blood plasma were studied by computer simulation. The results show that, in normal blood plasma, the most predominant species of Zn(II) are [Zn(HSA)] (58.2%), [Zn(IgG)](20.1%), [Zn(Tf)] (10.4%), ternary complexes of [Zn(Cit)(Cys)] (6.6%) and of [Zn(Cys)(His)H] (1.6%), and the binary complex of [Zn(CYS)(2)H] (1.2%). When zinc is deficient, the distribution of Zn(II) species is similar to that in normal blood plasma. Then, the distribution changes with increasing zinc(II) total concentration. Overloading Zn(II) is initially mainly bound to human serum albumin (HSA). As the available amount of HSA is exceeded, phosphate metal and carbonate metal species are established. Gd(III) entering human blood plasma predominantly competes for phosphate and carbonate to form precipitate species. However, Zn(II) complexes with phosphate and carbonate are negligible in normal blood plasma, so Gd(III) only have a little effect on zinc(II) species in human blood plasma at a concentration above 1.0x10(-4) M.
Resumo:
A novel organic-inorganic hybrid compound [Cu(phen)](2)[(VV4As2O19)-V-IV-As-V-O-V].0.5H(2)O 1 has been hydrothermally synthesized. Its structure, determined by single crystal X-ray diffraction, exhibits an unusual two-dimensional arsenic vanadate layered network grafted with the [Cu(phen)](2+) complex. The chelating phen ligands project perpendicularly beyond the inorganic layer. Variable temperature magnetic susceptibility studies indicate that both ferro- and antiferro-magnetic interactions exist in 1.