128 resultados para 411
Resumo:
测量了20~55 MeV F5+离子和Ta原子碰撞中Ta产生的L壳层X射线。计算了Ta的L各支壳层产生截面的比值和总截面的比值。利用L壳层的辐射跃迁几率、Croster-Kroning跃迁几率和L亚壳层的荧光产额,将平面波波恩近似(PWBA)和ECPSSR理论计算的电离截面转换为L层X射线产生截面,并与实验结果进行比较。结果表明,σ(Ll)/σ(Lα)、σ(Lγ)/σ(Lα)和σ(Ltotal)/σ(Lα)与ECPSSR理论预测结果吻合较好,σ(Lβ)/σ(Lα)较两种理论预测值均偏小。
Resumo:
IEECAS SKLLQG
Resumo:
简略介绍了高能质子在半导体芯片中引起单粒子效应的实验测量和理论分析方法,包括核反应分析方法、半经验方法,介绍了质子和重离子翻转截面间的关系,并用重离子实验数据预测器件在质子环境下的翻转率.
Resumo:
The ground-state properties of Hs nuclei are studied in the framework of the relativistic meanfield theory. We find that the more relatively stable isotopes are located on the proton abundant side of the isotopic chain. The last stable nucleus near the proton drip line is probably the (255)Hs nucleus. The alpha-decay half-lives of Hs nuclei are predicted, and together with the evaluation of the spontaneous-fission half-lives it is shown that the nuclei, which are possibly stable against spontaneous fission are (263-274)Hs. This is in coincidence with the larger binding energies per nucleon. If (271-274)Hs can be synthesized and identified, only those nuclei from the upper Z = 118 isotopic chain, which are lighter than the nucleus (294)118, and those nuclei in the corresponding alpha-decay chain lead to Hs nuclei. The most stable unknown Hs nucleus is (268)Hs. The density-dependent delta interaction pairing is used to improve the BCS pairing correction, which results in more reasonable single-particle energy level distributions and nucleon occupation probabilities. It is shown that the properties of nuclei in the superheavy region can be described with this interaction.
Resumo:
The high spin levels of a very neutron-rich Zr-104 nucleus have been reinvestigated by measuring the prompt. rays in the spontaneous fission of Cf-252. The ground-state band has been confirmed. A new sideband has been identified with a band-head energy at 1928.7 keV. The projected shell model is employed to investigate the band structure of Zr-104. The results of calculated levels are in good agreement with the experimental data, and suggest that the new band in Zr-104 may be based on the neutron nu 5/2(-)[532] circle times nu 3/2(+)[411] configuration.
Resumo:
Nd-129 was produced by irradiation of an enriched target of Ru-96 with a Ar-36 beam and studied by using a helium-jet fast tape transport system in combination with X-gamma and gamma-gamma coincidence measurements. A 2.6s isomer of Nd-129 was observed for the first time and tentatively proposed to be the configuration of 1/2[411].
Resumo:
随着国家大科学工程兰州重离子加速器冷却储存环(HIRFL-CSR)建成,CSRm实验探测系统也正在建设当中。CSRm实验探测系统由外靶系统和内靶系统构成。外靶系统主要有γ探测器、多丝漂移室(MWDC)、ToF墙(ToF Wall)、中子墙(Neutron Wall)等探测器组成,主要用于核物理研究。其中,用于探测中子的中子墙探测器是外靶系统中的一个重要组成部分,它有252个探测单元,每一个探测器单元都要求既有很好的能量分辨,也要有很好的时间分辨,同时还要求数据获取率达到每秒几千个事件。对于这样先进的探测器和大型实验探测系统采用传统的电子学仪器和方法已经无法构成读出电子学系统,建造与之相配的读出电子学系统是极为重要的和亟待解决的工作。为此,我们设计研发适合于中子墙探测器这样的大型闪烁体探测器的前端电子学读出系统。包括三大部分:16道电荷幅度转换电路(QAC),16道时间幅度转换电路(TAC)和有效信号判断电路。本论文的主要内容如下:在第一章绪论中,介绍了论文课题的出发点以及课题的意义,并对课题的背景进行了介绍。第二章介绍我们所自行设计的中子墙探测器的特点、结构。分析了中子墙探测器的输出信号的特点以及对后续前端电子学读出系统的要求。第三章是本论文两大核心部分之一,是本论文的创新点所在。主要介绍了我们电荷幅度转换的新方法,结合通常的QAC电路方法和具体的实际情况,我们自行提出了一种新的QAC电路,包括以下几个部分:差分输入电路、电流分割、上下恒流源、门控电流积分器。我们的创新点在于,我们用上下恒流源分别代替了通常QAC中作为电流分配的电流镜像和作为电流基准的电阻,这样一来更容易得到比较稳定的偏置电流,从而能够得到更高的转换精度。第四章是本论文的另外一个核心部分,首先我们论述了核电子学时间测量的几种方法,在对它们进行对比后,结合中子墙的实际特点,我们确定了采用起停型的TAC方法。然后介绍了TAC的原理,以及具体的电路结构。第五章主要的内容是对我们整个电路的逻辑电路进行了详细的介绍,它包括16道QAC和16道TAC的积分控制信号和泄放控制信号的产生电路以及有效信号判断电路。详细论述了这些逻辑关系以及如何在CPLD实现,并且给出了仿真结果。第六章详细讨论了我们在设计PCB板时遇到的问题及其解决方法。第七章介绍了多路QAC和多路TAC主要指标及其测试方法、步骤、结果并给出了误差分析。在总结部分我们回顾了我们整个工作的过程,介绍了论文的主要成果和创新点以及对于整个CSR工程的意义。本论文的创新点: 1、提出了一种新型的QAC电路。 2、将16道QAC和16道TAC以及有效信号判断电路集成在一个插件中提高了电路的集成度,并为最终集成在一片ASIC芯片中打下坚实的基础。 3、用可编程逻辑器件代替ECL器件来构建逻辑电路,降低了功耗和成本并提高了系统的可靠性
Resumo:
奇奇核作为研究准质子和准中子间相互作用的独特侯选核,近年来,人们给予了越来越多的关注。奇奇核高j组态带中观测到的低自旋旋称反转现象(Signature inversion)已成为原子核高自旋态领域中一个十分活跃的研究课题。近十年来,一系列基于二准粒子加转子模型框架的计算结果表明,奇奇核中这两个准粒子之间的相互作用与旋称反转现象的发生密切相关。相对于偶偶核和奇A核,奇奇核的能级结构更复杂一些,实验上对其高自旋态的研究比较困难,这主要体现在实验上所提供的许多奇奇核的能级纲图存在着一定程度的不确定性,例如能级的激发能位置、转动带的组态、自旋和宇称的指定,甚至在纲图结构、级联系列的核素归属等方面都有一些问题。其中,转动带能级自旋的指定直接关系到准粒子能量的劈裂属性(即正常劈裂还是反常劈裂、旋称反转发生在低自旋区还是高自旋区及旋称反转的发生位置等):自旋的奇偶性定错了,会导致本来是反转的旋称劈裂变成不反转的(反之亦然);自旋值定错了△I,会导致旋称反转的位置发生相应的漂移。由于实验上奇奇核转动带能级自旋指定的混乱局面,掩盖了旋称反转现象的客观规律,使得相关理论模型的计算结果得不到及时检验。基于激发能系统学分析方法、以顺排角动量相加性为判据,我们曾对A~160轻稀土区的πhl_(11/2)direct X vi_(13/2)转动带(17个核素)和A~130过渡区的πh_(11/2)direct XVh_(ll/2)转动带(20个核素)进行了系统研究,对其中20个核的自旋数据提出质疑、并提出了相应的修正方案,在此基础上总结了两核区旋称反转现象的系统规律。利用激发能系统学方法指定奇奇核转动带的能级自旋,主要遵循以下三点原则:①自旋奇偶性:根据推转壳模型的描述,当准粒子处于优惠态(Favored)时、较非优惠态(Unfavored)具有更大的顺排角动量。这样,通过对转动带中两signature分支系列的i_x大小的比较,可以辅助推断能级自旋的奇偶性;②顺排角动量相加性:在忽略p-n剩余相互作用条件下,奇奇核中总的顺排角动量近似等于相邻奇A核中相应组态带提取的准粒子顺排角动量之和。这样,利用i_x对自旋值比较敏感的特点,可以推断出能级自旋取值的大致范围;③激发能系统性分析:由于集体转动反映大量核子的集体行为,少数核子的改变不会对这种运动产生明显影响,利用转动惯量的组态相关特性,在一组同位素或同中子素系列链中,对应一定内禀结构的转动带,随着质子数或中子数的均匀递增,能级能量应表现光滑的变化趋势(即不发生突变)。这三个方面基于不同角度、相对独立地指定转动带自旋。其结论的统一、往往可以给出正确的自旋数据。然而,必须指出的是:系统学分析过程是一种经验方法,并不具有严格的理论基础,上述的自旋修正以及总结出的旋称反转规律,必须得到实验核谱学测量的支持。基于这一思想,针对两核区,我们分别选择情况较为阿典型的奇奇核~(158)Ho和~(124)Cs进行了集中的实验测量。本论文的主要研究目标就是要建立两核中晕带与低激发态或基态的联系,找出原纲图中错误自旋指定的原因所在,验证系统学结论的有效性,并用旋称反转的实验规律性对理论模型的系统计算结果进行检验。(一)奇奇核~(158)58Ho高自旋态的实验研究在原子能研究院的HI-13串列加速器上,通过~(152)Sm(~(11)B,5nγ)~(158)Ho融合蒸发反应(束流轰击能E_(lab)=60 MeV)、对目标核~(158)Ho的高自旋态进行布居。探测阵列由八个高纯锗探测器构成,为了提高低能射线的收集效率,使用了一个平面型高纯锗探测器。分别进行了激发函数曲线测量、γ-γ-t符合测量和剩余放射性测量。数据反演后,两重符合总记数~120x10~6。实验结果概括如下:1.建立了基态带,组态指定为:{πh_(11/2)[523]7/2-direct Xvh_(9/2)[521]3/2~-}K~π=5~+;2.建立了一个强度仅次于晕带的强耦合带结构(亚晕带:yrare band)。通过转动参数、跃迁几率、顺排角动量、带交叉频率等特征参量的分析,其组态指定为:{πg_(7/2)[404】7/2]~+ direct X vi_(3/2)[651]3/2~+}K~π=5~+。 尽管该带带头附近的结构还不完整,但观测到了带内几条能级退激、分别贯入到晕带和基态带,从而将晕带和亚晕带同基态联系起来,固定了晕带和亚晕带中能级的激发能位置,并通过对这些连接跃迁多极性的分析,指定了两个带中的能级自旋和宇称;3.晕带(πh_(11/2)direct X vi~(13/2))向高自旋端拓展了7条能级,最高自旋态达到26h,激发 能4.9MeV。肯定了原纲图中不确定的617kev跃迁的存在和放置,观测到了反转点(I_(inv.)≈16h),肯定了系统学研究对该核的自旋修正。基于本实验建立的连接关系,晕带中观测到的最低态(即70.8kev跃迁贯入能级)激发能为207.6kev,而对应该能级,原纲图中激发能为156.9kev。这意味着原能级纲图中,晕带向基态退激途径中漏掉了一个~5lkeV的"能隙"(Energy gap),自旋差|△I|=3。根据晕带与退激5-同质异能态的跃迁(156.9kev)的快符合关系,该"能隙"至少由两个跃迁构成。该结果否定了原纲图中对晕带带头处理的三种可能性(①70.8kev为连接跃迁,其退激的能级为带头;②70.8kev为带内跃迁,156.9kev、5-同质异能态为带头:⑨70.8kev为带内跃迁,156.9kev、5-同质异能态为带头,但带头附近仍存在尚未观测的跃迁)。不确切的连接关系是过去实验中无法正确指定晕带自旋的原因;4.建立了一个强耦合的转动带结构,其能级间距(跃迁E_γ)随角动量的增加均匀递增,组态指定为{πh_(11/2)[523]7/2~-direct Xvh_(11/2)[505]11/2~-}K~π=9~+;同时,观测到了另一高K激发态退激到该转动带。其内禀结构指定为:{πg_(7/2)[404]7/2~+direct Xvh_(11/2)[505]1 l/2~-}K~π=9~-;5.建立了基于156.9 kev(I~π=5~-、T_(1/2)=29 ns)同质异能态上的转动带,该带观测完整,具有较强耦合的结构特点。其内禀准粒子轨道指定为:{πh_(11/2)[523]_(7/2)~-direct X vd_(3/2)[402]3/2~+}K~π=5~-,与处于较低激发能(67.3 kev)的2~-态(T_(1/2)=27 min.)构成了一对GM伙伴态。否定了过去的实验中把该态指定为{πg_(7/2)~2+direct Xvh_(9/2)[521]3/2~-}K~π=2~-组态;6.观测到了一个基于65.5 kev激发态的转动带,通过理论模型预言的带头激发能及转动参数与实验值的比较、考虑到其较弱的布居强度和很低的顺排角动量、以及较强耦合的结构特点, 其组态指定为: {πd~(5/2)[402]5/2~direct X vh_(9/2)[521]3/2~-}K~π=4~-。这一结果肯定了过去放射性测量中对处于较高激发能(139.2 kev)、T_(1/2)=1.85 ns、I~π=1~-激发态的讨论,即二者构成了一对GM伙伴态;7.建立了基于{πh_(11/2)[523]7/2~-direct X v_(7/2)[523]5/2~-}K~π=6~+激发态的强耦合转动带结构,其带头激发能为450.1 kev,与I~π=1~+、激发能为146.9 kev的同质异能态构成了一对GM伙伴态;8.在过去的放射性衰变测量中,提供了三个2~+激发态(激发能分别为117.7 kev、74.95 kev和316 kev)。其中两个2~+态(117.7和74.95 kev)同时指定具有{πh_(11/2)[523↑]7/2~-direct X vh_(9/2)[521↓]3/2~-}K~π=2~+组态。这里,我们指定1 17.7 kev的2~+激发态为{πg_(7/2)[404↓]7/2~+ direct X vi_(l3/2)[651↓]3/2~+}K~π=2+组态,即与本实验建立的亚晕带内禀激发态构成了一对GM伙伴态,而74.95 kev的2~+激发态指定为 {πh_(11/2)[523↑]7/2~-direct X vh_(9/2)[521↓]3/2~-}K~π=2~+组态,即与基态构成了一对GM伙伴态。基于本实验中K~π=9~+激发态的观测及其转动带的建立,我们指定激发能为3 1 6 kev的2~+激发态具有{πh_(11/2)[523↓]7/2~-direct X vh_(11/2)[505个]1 1/2~-}K~π=2~+组态,即这两个态构成了一对GM伙伴态;9.通过本实验、提供了~(158)Ho中各能态的跃迁强度和跃迁几率等数据。概括起来,奇奇核~(158)Ho的能级纲图大大完善了。综合本实验观测到的高自旋转动带结构和放射性测量中的部分激发态信息,我们可以整理出10对GM伙伴态,并提供了四个分别对应自旋平行和反平行耦合的GM能量漂移(GM Shift),即:{πh_(ll/2)[523]7/2~-direct Xvh_(9/2)[521]3/2~-}K~π=5~+、2~+,EGM=101.4 kev;{πh_(11/2)[523] 7/2~-direct X vd_(3/2)[402]3/2~+}K~π=5~-、2~-,E_(GM)=64.1 kev;{πd_(5/2)[402]5/2~+direct X vh_(9/2)[521]3/2~-}K~π =4~-、1~-,E_(GM)=113.3 kev;{πh_(11/2)[523]7/2~-direct Xvf_(7/2)[523]5/2~-}K~π=6~+、1~+,EGM=255.7 keV。(二)奇奇核~(124)Cs高自旋态的实验研究在原子能院的HI-13串列加速器上,利用~(116)Sn(~(11)B,3nγ)~(124)Cs融合蒸发反应(束流轰击能E_(lab.)=45 MeV),对奇奇核~(124)Cs的高自旋态进行了布居。探测阵列由10个高纯锗探测器和一个小平面探测器组成。数据反演后,总的两重符合事件数达到160x10~6。实验结果概括如下:1.高自旋转动带的信息更丰富了:建立了三个新的转动带结构,其中两个耦合带、一个退耦带,组态分别为:{πh_(11/2)[550]1/2~- direct X vhd_(5/2)[413]5/2~+}K~π=3~-、{πg_(7/2)[413]5/2~+direct X vg_(7/2)[402】5/2~+}K~π=5~+以及{πh_(11/2)[550]1/2~- direct X vd_(3/2)[400]l/2~+}K~π=1~-;2.低激发态的信息更丰富了:观测到了20多条新的低激发态跃迁,增加了10多个新的低激发态;3.转动带之间以及转动带与低激发态间耦合的信息大大丰富了:在过去的研究中观测到了三个彼此孤立、悬空的转动带结构,这里指定它们的组态为:{πh_(11/2) [550]1/2~-direct X vh_(11/2)[523]7/2~-}K~π=4~+(晕 带) ; {πh_(11/2)[550]1/2~- (direct X)vg_(7/2)[402]5/2~+}K~π=3~-(亚晕带:布居强度仅次于晕带);{πh_(11/2)[550]1/2~-(direct X)vs_(1/2)[411]1/2~+}K~π=1~-(双退耦结构)。其中,亚晕带(yrare band)通过至少三个独立的退激路径与低激发态联系起来;同时,建立了晕带与亚晕带间的多条连接关系。其它转动带分别与晕带和亚晕带联系起来,从而,在奇奇核~(124)Cs中,转动带的"悬空"不再存在,限定了各转动带中能级的激发能位援,并通过这些连接跃迁多极性的分析,分别指定了各能态的自旋和宇称。4.基于本实验建立的连接关系,晕带的最低态(124kev射线贯入能级)的激发能为618.9kev,该能量值比过去研究中的同一能级高出11.7kev。这表明原能级纲图中晕带的退激途径漏掉了一个11.7kev的"能隙"(根据Weisskopf估计,该能隙很可能由两个偶极跃迁构成)。该"能隙"的漏观测,正是导致过去实验中无法正确指定晕带自旋的原因所在;
Resumo:
本论文主要进行了奇奇核~(166)Lu、~(168)Lu和奇中子核~(87)Zr的高自旋态的研究工作,对它们高自旋态的一些物理现象进行了讨论。并且首次对1/2~-[541](direct X)vi_(13/2)组态带的系统学规律进行了总结。主要由以下三个部分组成:~(166,168)Lu高自旋态的研究在最近有关形变奇奇核高自旋态的研究工作中,随着实验上π1/2-[541](direct X)vi_(13/2)带自旋的确定,人们发现除了130区的兀h_(11/2)(direct X)vh_(11/2)和160区的兀h_(11/2)(direct X)vi_(13/2)组态带低自旋旋称反转以外,π1/2~-[541](direct X)vi_(13/2)带的低自旋也是反转的,该转动带低自旋旋称反转现象引起了人们的很大的兴趣并得到很广泛的研究,为了通过π1/2~-[541](direct X)vi_(13/2)带与已知自旋和宇称的基态和一些低激发态相连,确定该转动带的自旋,人们付出了很大的努力。特别是最近几年,一些实验上自旋的确定,使得研究π1/2~-[541](direct X)vi_(13/2)组态带低自旋旋称反转的系统学规律成为可能。需要指出的是在以前的研究结果中,~(166)Lu的π1/2~-[541](direct X)vi_(13/2)组态带的能级摆动规律与相邻奇奇核该组态带的能级摆动规律严重不符,澄清该疑点是我们重新研究该核的主要动力之一。在以前~(168)Lu的研究工作中,只在~(168)Lu中发现两个带,但其中只有晕带的组态得到指定,根据带结构和旋称劈裂的大小估计另一个带极有可能是π1/2~-[541](direct X)vi_(13/2)带。为了澄清以上这些疑点和得到π1/2~-[541](direct X)vi_(13/2)组态带的系统学规律,我们重新研究了。~(166,168)Lu的高自旋态。另外(h_(11/2)_p(i_(13/2))_n组.态带的低自旋旋称反转是一个广为人知的物理现象,但在以前的有关~(166)Lu的结果中对(h_(11/2))_p(i_(13/2))_n组态带白旋的确定与该组态带低自旋旋称反转系统规律相反,这也是我们对~(166)Lu重新研究的一个原因。实验是在北京中国原子能科学研究院HI-13串列加速器上进行的,分别利用入射能量为97MeV和92MeV的~(19)F束通过熔合蒸发反应~(152)Sm(~(19)F,~5n)~(166)Lu和~(154)Sm(~(19)F5n)~(168)Lu布居了~(166)Lu和~(168)Lu的高自旋态。用十台HpGe探测器组成的探测阵列进行γ-γ符合测量,对~(166)Lu和~(168)Lu分别记录了约1.27 * 10~8和0.25 * 10~8个两重和两重以上的符合事件。在~(166)Lu中,共发现了五条转动带,根据它们的顺排在0.28MeV均没有出现上弯,意味着它们的中子均占居i_(13/2)轨道,同时根据在~(165)Lu和~(167)Lu只发现基于9/2~-[514]、7/2~-[404]、1/2~-[541]、1/2~+[411]和5/2~+[402]轨道的转动带及在~(165)Yb和~(167)Hf中晕带均为5/2~+[642]的事实,那么由上述质子轨道和中子轨道组成的转动带是本文发现的五条带的最可能的侯选者。本实验中观察到的五条转动带分别基于7/2~+[404](direct X)5/2~+[642]、9/2~-[514](direct X)5/2~+[642]、1/2~-[541](direct X)5/2~+[642]、5/2~+[402](direct X)5/2~+[642]和1/2~+[642](direct X)5/2~+[642]轨道的转动带。和以前的数据相比主要有以下几点改进:(A)在以前的结果中,包括2000年新发表的有关~(166)Lu的文章,他们均把本文~(166)Lu纲图中(5)和(6)退激系列归属于π1/2~-[541](direct X)v5/2~+[642]转动带,而在本文中通过符合关系一个新的退激系列(7)被发现,根据(6)和(7)之间的符合关系、带交叉频率、γ射线强度和B(M1)/B(E2)的比值等关系,本文认为新发现的退激系列(7)与(6)组成新的π1/2~-[541](direct X)v5/2~+[642]转动带.以前的结果的错误在于把属于1/2~-[541](direct X)5/2~+[642]转动带的α = 0与1/2~-[541](direct X)5/2~+[642]转动带的α = 0误归于一个带,这就澄清了原文献中π1/2~-[541](direct X)v5/2~+[642]转动带能级摆动规律与相邻奇奇核该组态带能级摆动规律不符的疑点,同时把原文献中误归于π1/2~-[541](direct X)v5/2~+[642]转动带的那一个退激系列(5)重新指定为1/2~+[411](direct X)5/2~+[642]带(α = 0);(B)通过分析实验数据、跃迁能量系统学和运用顺排相加性规则对以前实验中建立的9/2~-[514](direct X)5/2~+[642]和7/2~+[404](direct X)5/2~+[642]带的自旋进行了重新指定,把它们的自旋在原文的基础上加1个单位,澄清了以前的有关~(166)Lu结果中对9/2~-[514](direct X)5/2~+[642]组态带自旋的确定与该组态带低自旋旋称反转事实相反的疑点;(C)新发现了基于9/2~-[541](direct X)5/2~+[642]组态的转动带。在~(168)Lu中,共观察到了四条转动带,分别是π1/2~-[541](direct X)v5/2~+[642]、7/2~+[404](direct X)5/2~+[642]、 9/2~-[514](direct X)5/2~+[642]和7/2~+[404](direct X)5/2~-[523](本文新建立的带)带,本文对其中晕带7/2~+[404](direct X)5/2~+[642]的K值取值与原文献中的取值不同,并根据能量系统学和带头激发能指出不同的原因。 除以上所述外,本文还给出了~(166)Lu和~(168)Lu各γ射线的强度、转动参数A、较强γ射线的DCO值、分支比和B(M1)/B(E2)等实验值。基于实验和理论预期的B(M1)/B(E2)比值的比较、各带带交叉行为、顺排相加性、带头激发能和转动参数A对各带的组态和自旋进行了指定。最后通过对实验上对~(162,164)Tm、~(174)Ta和~(176)Re的π1/2~-[541](direct X)vi_(13/2)组态带p-n剩余相互作用信息的提取,指出奇质子核中1/2~-[541]带的带交叉频率相对相邻偶偶核的延迟约三分之一到一半左右,其原因是由于p-n剩余相互作用所造成的(包含了对效应和形变变化的CSM模型能够解释另一半的偏离),可以定性的认为正是由于形变、对相互作用的变化和剩余p-n相互作用三者相结合导致了整个的1/2~-[541]带中带交叉频率的偏离。旋称反转机制综述和πh_(932)(direct X)vi_(l3/2)组态的系统学首先对导致旋称反转的各种机制做一简单回顾,同时对ππh,u2⑩vi,钔组态带系统学规律做一简单总结,总结了πh_(11/2)(direct X)Vi_(13/2)组态带的跃迁能量系统学规律。在最近,随着~(162)Tm、~(164)Tm、~(174)Ta和~(176)Re等几个奇奇核中半退耦带1/2~-[541](direct X)vi_(13/2)的自旋通过实验方法的确定,人们惊奇的发现在上述这些核~(162)Tm、~(164)Tm、~(174)Ta和~(176)Re)中半退耦带1/2~-[541](direct X)vi_(13/2)在低自旋区都是旋称反转的。人们就会很自然的回头去看那些在该区已经布居1/2~-[541](direct X)vi_(l3/2)组态带的那些核,结果发现对于该组态带的自旋的指定是很杂乱无章的,有些自旋的确定即不符合能量系统学又与顺排相加性规则相悖,如在~(172)Ta和~(178)Re中(值得指出的是有关这两个核的文章均是在十年前发表的),自旋的指定明显与最近发表的该区πhg_(9/2)(direct X)vi_(13/2)组态带自旋不符,本文通过能量系统学和顺排相加性对~(172)Ta和~(178)Re的1/2~-541](direct X)vi_(13/2)组态带自旋做了修改,分别增加了3h和h。本文通过对最新结果~(162)Tm、~(164)Tm、~(170)Lu、~(170,174,176)Ta、~(176)Re、~(180)Ir)和以前的结果(~(172)Ta和~(178)Re)及本文的结果(~(166,168)Lu)对上述12个核的1/2~-[541](direct X)vi_(13/2)组态带的S(I) = E(I)-E(I-1)- E(I + 2)-E(I + 1)-E(I - 1)-E(I - 2)]/2~I的变化图的分析,继A ≈ 130区7πh_(11/2)(direct X)vh_(11/2)组态带和A ≈ 160区πh_(11/2)(direct X)vi_(13/2)组态带的系统学规律以后,首次总结出A ≈ 170区π1/2~-541](direct X)vi_(13/2)组态带的系统学规律:反转点的自旋随N的增加而增加,随Z的增加而减小,与πh_(11/2)(direct X)和πh_(11/2)(direct X)vi_(13/2)转动带的系统学规律很相似,即反转点自旋均随中子和质子单调地变化。通过对各种理论模型的研究发现三轴形变、科里奥利力、带交叉与自反转和p-n相互作用在奇奇核中都有可能导致旋称反转,包含有p-n相互作用的粒子-转子模型在πh_(11/2)(direct X)和vh_(11/2)、πh_(11/2)和π1/2 ~-[541](direct X)vi_(13/2)组态带中的旋称反转上取得了某些成功,表明p-n相互作用在解释奇核低自旋反转现象中起着很重要的作用。通过对实验上π1/2~-[541](direct X)vi_(13/2)组态带旋称反转点与文献中理论计算值的比较,得出p-n相互作用强度的变化可能是导致π1/2~-[541](direct X)vi_(13/2)组态带症称反转点变化主要原因的结论。过渡区核~(87)Zr的高自旋态研究在A≈80区,许多原子核的中子和质子数都处在28和50两个满壳层之间,对于这些核而言,任何一种核子数的改变都有可能导致核形状的显著变化。有研究结果表明,对于40≤Z≤45的核来讲,N=46是变形核向球形核变化的转折点。在40≤N≤50区,对Zr(Z=40)同位素系列中诸原子核能级结构伴随中子数改变而发生的变化的研究将会帮助我们了解这个形状变化的过程。我们所研究的~(87)Zr含有47个中子,就处于这个过渡区。实验是在北京中国原子能科学研究院HI-13串列加速器上进行的,利用入射能量为118MeV的~(32)S束通过~(58)Co(~(32)S,3pn)~(87)Zr熔合蒸发反应布居。~(87)Zr的高自旋态,实验用的靶为附有Ta衬的厚度1082μg/cm~2的~(59)Co箔。用7台HpGe探测器组成的探测阵列进行γ-γ符合测量。同时采用一个小平面光子探测器探测低能γ射线。本实验记录了约1.5 * 10。个两重以上的符合事件,建立了自旋直到37/2和43/2的能级纲图。研究的结果表明:~(87)Zr与相邻同中子奇A核的正宇称低激发能级之间存在着很强的相似性,而与相邻奇A核同位素相比,结构变化明显, 这可能表明在该核区对核形变的影响中子占主要地位,质子影响较小。激发能随中子变化的比值图呈阶梯状,认为R ≈ 1.5,R_x ≈ 2.0和R_x ≥ 2.2分别代表核形变的三个区域,即球型核、过渡区核和形变核。通过与相邻(Z,N + 1)偶偶核低激发态能级相比较的方法对各低激发能级组态的主要成分进行了估计,发现随自旋的增加,出现了各能级组态之间的混杂。
Resumo:
For heat energy storage application, polyurea. microcapsules containing phase change material, n-eicosane, were synthesized by using interfacial polymerization method with toluene- 2,4-diisocyanate (TDI) and diethylenetriamine (DETA) as monomers in an emulsion system. Poly(ethylene glycol)octyl-phenyl ether (OP), a nonionic surfactant, was the emulsifier for the system. The experimental result indicates that TDI was reacted with DETA in a mass ratio of 3 to 1. FT-IR spectra confirm the formation of wall material, polyurea, from the two monomers, TDI and DETA. Encapsulation efficiency of n-eicosane is about 75%. Microcapsule of n-eicosane melts at a temperature close to that of n-eicosane, while its stored heat energy varies with core material n-eicosane when wall material fixed. Thermo-gravimetric analysis shows that core material n-eicosane, micro-n-eicosane and wall material polyurea can withstand temperatures up to 130, 170 and 250 degreesC, respectively.