237 resultados para 20-202
Resumo:
文章利用20世纪90年代初期、中期和末期全国1∶100000土地利用动态变化数据提取城镇用地动态变化数据,利用单元自动机和人工神经网络模型对全国城镇用地进行了区划。在此基础上,研究了90年代两个阶段中国城镇用地时空格局。研究表明:90年代前5年东部沿海地区受经济高速发展和开放政策的影响,城镇用地扩展迅速,中西部地区城镇用地扩展较慢;90年代后5年国家加大了耕地资源保护力度,在政府宏观调控政策和耕地资源保护条例的影响下,东部沿海地区城镇用地扩展大幅回落,中部地区城镇扩展也有较大幅度回落,西部地区随着经济发展加快,城镇用地扩展回落较小。
Resumo:
内蒙古是我国风力侵蚀较为严重的地区之一,同时也是我国土地利用方式剧烈变化的地区之一。依据两期土地利用数据以及相应年代的土壤风力侵蚀数据,研究了20世纪90年代内蒙古自治区土地利用和风力侵蚀的静、动态格局。根据土地利用和风力侵蚀的空间分布及动态变化特点,设计了内蒙古土地利用—风力侵蚀动态区划,基于该区划详细讨论了内蒙古不同地区占主导地位的土地利用动态与风力侵蚀动态,由此揭示了两者之间存在的驱动——被驱动关系。研究发现,在过去10年里,内蒙古土地利用和风力侵蚀的基本格局没有太大变化,但风力侵蚀在总体上是增强了,而土地利用的变化主要反映为草地的退化和耕地的扩张。土地利用动态与风力侵蚀动态有着良好的时空对应关系草地的退化与耕地的扩张导致了显著的风力侵蚀增强,而草地的改善以及耕地的收缩对风力侵蚀的影响不是很大,这同时也表明了土地利用动态对风力侵蚀动态正、反向驱动力的不平衡性。
Resumo:
在20世纪90年代中国气候观测数据和遥感土地利用动态观测数据的支持下,计算了中国20世纪90年代农田光温生产潜力的变化.结果表明:20世纪90年代的LUCC过程直接导致了中国农田光温生产潜力总量和区域分布的变化,总体趋势是南减北增,总量净增加2622万吨;在各种土地利用类型之间的相互转变和转化过程中,耕地扩张和农田损失是导致全国农田光温生产潜力总量净变化的主要原因,耕地扩张使全国农田光温生产潜力总量净增加8335万吨,占全国农田光温生产潜力总量的3.50%,主要分布在东北、西北和华北等农林、农牧交错区和沙漠绿洲区,主要是由于该地区大面积的农田开垦所导致;农田损失使全国农田光温生产潜力总量净减少5713万吨,占全国农田光温生产潜力总量的2.40%,主要分布在黄淮海平原、长江三角洲、珠江三角洲、陇中、东南沿海、四川盆地东南部以及乌鲁木齐—石河子一带,主要是由于该区域经济发展较快,城市扩张明显,城乡建设用地大量侵占耕地的缘故.
Resumo:
采用真空熔炼法制备了Ti45Zr35Ni20合金,研究了合金在不同温度下的电化学贮氢性能。结果表明,Ti45Zr35-Ni20电极的电化学性能随着温度而变化,温度从323 K升高到343 K时,电极的活化次数从22次减少到8次,放电容量从86.1 mAh/g增到135.0 mAh/g,快速放电能力也有所提高,然而,高温使电极的循环稳定性显著下降,自放电率增大。
Resumo:
A new approach to one-dimensional organization of gold nanoparticles (2-4 nm) is described, using poly(4-vinylpyridine) (P4VP) molecular chain as a template with the mediation of free Cu2+ ion coordination. The assembly was conducted on freshly prepared mica surfaces and in aqueous solution, respectively. The surface assembly was characterized by tapping mode atomic force microscopy (AFM), observing the physisorbed molecules in their chain-like conformation with an average height of 0.4 nm.
Resumo:
A green one-step approach has been developed for the synthesis of amino-functionalized magnetite nanoparticles. The synthesis was accomplished by simply mixing FeCl2 with arginine under ambient conditions. It was found that the Fe2+/arginine molar ratio, reaction duration and temperature greatly influence the size, morphology and composition of magnetic nanoparticles. The arginine-stabilized magnetic nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy techniques.
Resumo:
CdSe nanocrystals (NCs) are prepared in noncoordination solvents (1-octadecene (ODE) and paraffin liquid) with Ion g-chain primary alkylamine as the sole ligand, ODE-Se, and cadmium fatty acid salt as precursors. The obtained NCs meet the four fundamental parameters for high-quality NCs: high crystallinity, narrow size distribution, moderate photoluminescence quantum yield, and broad range size tunableness. Further, by simply regulating the relative molar ratio of alkylamine to cadmium precursor, the regular sized "nuclei" and final obtained NCs can be produced predictably within a certain size range.
Resumo:
Well-dispersed YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) nanocrystals with uniform morphology and size have been synthesized via a facile solvothermal route. XRD results demonstrate that all of the three samples can be well indexed to the pure tetragonal phase Of YVO4, indicating that the Eu3+, Dy3+, and Sm3+ have been effectively doped into the host lattices of YVO4. TEM images show that the YVO4 nanocrystals exhibit ellipsoid shape and a mean size of about 20 nm, which is in good agreement with the estimation of XRD results.
Resumo:
Highly crystalline organic superlattice has great potential for providing innovative function in organic devices. With studies of the structure and fundamental electronical properties, we have demonstrated the phathalocynine organic superlattice, which is a structure composed of periodically alternating crystalline layers of H2Pc and F16CuPc. A periodical crystal structure and electronic structure appear in this organic superlattice system. High density of mobile electrons and holes distribute periodically in F16CuPc and H2Pc layers, respectively, leading to a significant change in intrinsic properties of organic semiconductors.
Resumo:
5,10,15,20-Tetra-[(p-alkoxy-m-ethyloxy)phenyl]porphyrin and [5-(p-alkoxy)phenyl-10,15,20-tri-phenyl]porphyrin and their holmium(III) complexes are reported. They display a hexagonal columnar discotic columnar Col(h)) liquid crystal phase and were studied by cyclic voltammetry, surface photovoltage spectroscopy (SPS), electric-field-induced surface photovoltage spectroscopy (EFISPS) and luminescence spectroscopy. Within the accessible potential window, all these compounds exhibit two one-electron reversible redox reactions. Quantum yields of Q band are in the region 0.0045-0.21 at room temperature. The SPS and EFISPS reveal that all the compounds are p-type semiconductors and exhibit photovoltaic response due to pi-pi* electron transitions.
Resumo:
Ti45Zr35Ni13Pd7 alloys are prepared by melt spinning at different cooling rates (v). The phase structure and electrochemical hydrogen storage performance are investigated. When U is 10 m/s, the alloy consists of icosahedral quasicrystalline phase (I-phase), C14 Laves phase and a little amorphous phase. When v increases to 20 or 30 m/s, a mixed structure of I-phase and amorphous phase is formed. Maximum discharge capacity of alloy electrode decreases from 156 mAh/g (v = 10 m/s) to 139 mAh/g (v = 30 m/s) with increasing v. High-rate discharge ability at the discharge current density of 240 mA/g decreases monotonically from 61.2% (v = 10 m/s) to 56.8% (v = 30 m/s).
Resumo:
Effect of La-Mg-based alloy (AB(5)) addition on Structure and electrochemical characteristics of Ti0.10Zr0.15V0.35Cr0.10Ni0.30 hydrogen storage alloy has been investigated systematically. XRD shows that the matrix phase structure is not changed after adding AB(5) alloy, however, the amount of the secondary phase increases with increasing AB(5) alloy content. The electrochemical measurements show that the plateau pressure Ti0.10Zr0.15V0.35Cr0.10Ni0.30 + x% La0.85Mg0.25Ni4.5Co0.35Al0.15 (X = 0, 1, 5, 10, 20) hydrogen storage alloys increase with increasing x, and the width of the pressure plateau first increases when x increases from 0 to 5 and then decreases as x increases further, and the maximum discharge capacity changes in the same trend.
Resumo:
We report a simple method for the label-free detection of double-stranded DNA using surface-enhanced Raman scattering (SERS). We prepared cetyltrimethylammonium bromide (CTAB)-capped silver nanoparticles and a DNA-nanoparticle complex by adding silver nanoparticles to lambda-DNA solutions. In the present study, the utilization of CTAB-capped silver nanoparticles facilitates the electrostatic interaction between DNA molecules and silver nanoparticles; at the same time, the introduction of DNA avoids adding aggregating agent for the formation of nanoparticle aggregates to obtain large enhancement of DNA, because the DNA acts as both the probe molecules and aggregating agent of Ag nanoparticles.
Resumo:
In vitro a-glucosidase inhibition assays and ultrafiltration liquid chromatography with photodiode array detection coupled to electrospray ionization tandem mass spectrometry (ultrafiltration LC-DAD-ESI-MSn) were combined to screen a-glucosidase inhibitors from hawthorn leaf flavonoids extract (HLFE). As a result, four compounds were identified as alpha-glucosidase inhibitors in the HLFE, and their structures were confirmed to be quercetin-3-O-rha-(1-4)-glc-rha and C-glycosylflavones (vitexin-2 ''-O-glucoside, vitexin-2 ''-O-rhamnoside and vitexin) by high-resolution sustained off resonance irradiation collision-induced dissociation (SORI-CID) data obtained by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS).
Resumo:
In this report, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to study the binding interactions between calmodulin and two target peptides (melittin and substance P). Various matrix conditions were tested and the less acidic matrix DHAP and THAP were found to favor the survival of the intact calcium-calmodulin as well as the calmodulin-peptide complexes. However, the application of direct MALDI-MS to detect the intact complexes turned out to be very difficult due to the dissociation of the complexes and the formation of nonspecific aggregates. In contrast, the specific binding of the target peptides to calmodulin could be easily deduced using intensity-fading (IF) MALDI-MS. Compared with the nonbinding control, clear reduction in the ion abundances of the target peptides was observed with the addition of calmodulin.