67 resultados para synchronous fluorescence spectroscopy
Resumo:
Sea water samples were collected in the East China Sea in March and April, 2005, and three-dimensional fluorescence of dissolved organic matter was measured by fluorescence excitation-emission matrix spectroscopy. The position, number and intensity of fluorescence peak in the spectra and the relations of the peaks were analyzed to determine the type, distribution and origin of the fluorescence dissolved organic matter. Seven types of fluorescence peaks were detected from the samples. There are protein-like fluorescence peaks B with Ex(max)/Em(max) = 275/300 nm, D with Ex(max)/Em(max) = 225/295-305 nm, T with Ex(max)/Em(max) = 280/345 nm, and S with Ex(max)/Em(max) = 225-240/320-350 nm, two humic-like peaks A with Ex(max)/Em(max) = 250-255/410-455 nm and C 335-345/410-440 ran, and marine humic peak M with Ex(max)/Em(max) = 305 nm/400-420 nm. Peaks B, S and A appeared in all surveyed area. Peaks T and D appeared in the north of the surveyed area. Peaks M and C only appeared in a few stations. In the surface layer, the source of the fluorescence dissolved organic matter might be the fresh water outflow of the Yangtze River, while the fluorescence dissolved organic matter in the middle layer had double sources from the Yangtze River and the phytoplankton. The good correlationships of different fluorescence peaks showed the same source or some relationship between the protein-like and the humic-like fluorescence dissolved organic matter.
Resumo:
Fluorescence excitation-emission spectroscopy (EEMS) was employed to analyze the 3-dimensional fluorescence of dissolved organic matter in the East China Sea after diatom red tide dispersion. The relationships between fluorescence peak intensity, and salinity and chlorophyll-a were discussed. The centers of protein-like fluorescence peaks dispersed at Ex(max)/Em(max) = 270-280/290-315 nm (Peak B), 220-230/290-305 nm (Peak D), 230-240/335-350 nm(Peak S)and 280/320 nm(Peak T). Two humic-like peaks appeared at 255-270/435-480 nm (Peak A) and 330-350/420-480 nm(Peak C). High tyrosine-like intensity was observed in diatom red tide dispersion area, and tryptophan-like fluorescence was also found which was lower. High FIB/FIS showed that diatom red tide produced much tyrosine-like matter during dispersion. Peaks S, A and C had positive correlation with one another, and their distributions were similar, which decreased with distance increasing away from the shore. Good negative correlations between peaks S, A and C and salinity suggested that Jiangsu-Zhejiang coastal water was the same source of then-L Correlations between fluorescence peak intensity and chlorophyll-a were not remarkable enough to clear the relationship between fluorescence and living algal matter. It was supposed that the living algal matter contributed little to the fluorescence intensity of algal dispersion seawater.
Resumo:
The three-dimensional fluorescence spectrum was used to detect the changes in dissolved organic substances from the cultured Skeletonema costatum, Alexandrium tamarense, Alexandrium mimutum, Scrippsiella trochodea, Prorocentrum donghaiense and Prorocentrum micans. The result indicates that all of the microalgaes can produce FDOM in the growth courses. Diatom such as Skeletonema costatum can produce humic-like FDOM. However dinoflagellate can produce protein-like FDOM at exponential growth phase. When the algae grows into decadency phase, the intensity of humic-like and protein-like fluorescence augments rapidly, which may be due to a mass of FDOM realeased by the old or dead cell fragmentation and the degradation of bacteria by using non-FDOM. The fluorescent intensity of Alexandrium tamarense, Alexandrium mimutum, Prorocentrum donghaiense and Prorocentrum micans can reduce at anaphase of decadency phase because of the degradation of bacteria and light. The same genus of algae can produce similar FDOM, for example: Alexandrium tamarense, and Alexandrium mimutum, Prorocentrum donghaiense and Prorocentrum micans, but the positions of the fluorescence peaks are different.
Resumo:
A method of hydride generation-atomic fluorescence spectrometry was proposed in the present paper for the determination of trace arsenic and selenium in jellyfish. The samples were treated by the combination of microwave digestion and lyophilization. The optimal conditions for treating and analyzing samples were established. The problem of the effect of the superfluous acid in the digesting solution on the results was solved, and the influence of coexisting foreign ions on the determination of arsenic and selenium was investigated. The accuracy of the method was confirmed by the method of standard additions. This method proved to be simple, rapid and repeatable, and is suitable for the analysis of biologic samples containing water.
Resumo:
Coke formation on/in ZSM-5, USY and SAPO-34 zeolites was investigated during the methanol conversion to olefins at temperatures from 298 to 773 K using ultraviolet (UV) Raman spectroscopy. The fluorescence interference that usually obscures the Raman spectra of zeolites in the conventional Raman spectroscopy, particularly for coked catalysts, can be successfully avoided in the UV Raman spectroscopy. Raman spectra are almost the same for adsorbed methanol on the three zeolites at room temperature. However, the Raman spectra of the surface species formed at elevated temperatures are quite different for the three zeolites. Coke species formed in/on SAPO-34 are mainly polyolefinic species, and in/on ZSM-5 are some aromatic species, but polyaromatic or substituted aromatic species are predominant in USY at high temperatures. Most of the coke species can be removed after a treatment with O-2 at 773 K, while some small amount of coke species always remains in these zeolites, particularly for USY. The main reason for the different behavior of coke formation in the three zeolites could be attributed to the different pore structures of the zeolites. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A series of aluminosilicate zeolites are characterized by UV Raman spectroscopy for the first time, and UV Raman spectra of various zeolites give strong and clear bands with high resolution, while conventional Raman spectra of these zeolites are difficult to obtain because of a strong background fluorescence. Additionally, these zeolites show several new bands in UV Raman spectroscopy. A summary of these UV Raman spectra over various zeolites suggests that the bands at 470-530, 370-430, 290-410, and 220-280 cm(-1) can be assigned to the bending modes of 4-, 5-, 6-, and 8-membered rings of aluminosilicate zeolites, respectively. Furthermore, it is found that the band intensity of zeolites in UV Raman spectroscopy is dependent on the Si/Al ratio. Moreover, the UV Raman spectra of crystallization, for zeolite X at various times show that, in the initial stage of crystallization, the 4-membered rings (510 cm(-1)) interconnect each other to form beta -cages with 6-membered rings (390 cm(-1)), which further crystallize to zeolite X. (C) 2001 Elsevier Science B.V. All rights reserved.