125 resultados para surface emitting lasers
Resumo:
We have studied the growth of GaInNAs/GaAs quantum well (QW) by molecular beam epitaxy using a DC plasma as the N sourer. The N concentration was independent of the As pressure and the In concentration, but inversely proportional to the growth rate. It was almost independent of T, over the range of 400-500 degreesC, but dropped rapidly when T-g exceeded 500 degreesC. Thermally-activated N surface segregation is considered to account for the strong falloff of the N concentration. As increasing N concentration, the steep absorption edge of the photovoltage spectra of GaInNAs/GaAs QW became gentle, the full-width at half-maximum of the photoluminescence (PL) peal; increased rapidly, and a so-called S-shaped temperature dependence of PL peak energy showed up. All these were attributed to the increasing localized state as N concentration. Ion-induced damage was one of the origins of the localized state. A rapid thermal annealing procedure could effectively remote the localized state. (C) 2001 Elsevier Science D.V. All rights reserved.
Resumo:
A new 12 channels parallel optical transmitter module in which a Vertical Cavity Surface Emitting Laser (VCSEL) has been selected as the optical source is capable of transmitting 37.5Gbps date over hundreds meters. A new 12 channels parallel optical receiver module in which a GaAs PIN (p-intrinsic-n-type) array has been selected as the optical receiver unit is capable of responding to 30Gbps date. A transmission system based on a 12 channels parallel optical transmitter module and a 12 channels parallel optical receiver module can be used as a 10Gbps STM-64 or an OC-192 optical transponder. The parallel optical modules and the parallel optical transmission system have passed the test in laboratory.
Resumo:
This paper describes the design process and performance of the optimized parallel optical transmission module. Based on 1x12 VCSEL (Vertical Cavity Surface Emitting Laser) array, we designed and fabricated the high speed parallel optical modules. Our parallel optical module contains a 1x12 VCSEL array, a 12 channel CMOS laser driver circuit, a high speed PCB (Printed Circuit Board), a MT fiber connector and a packaging housing. The L-I-V characteristics of the 850nm VCSEL was measured at the operating current 8mA, 3dB frequency bandwidth more than 3GHz and the optical output 1mW. The transmission rate of all 12 channels is 30Gbit/s, with a single channel 2.5Gbit/s. By adopting the integration of the 1x12 VCSEL array and the driver array, we make a high speed PCB (Printed Circuit Board) to provide the optoelectronic chip with the operating voltage and high speed signals current. The LVDS (Low-Voltage Differential Signals) was set as the input signal to achieve better high frequency performance. The active coupling was adopted with a MT connector (8 degrees slant fiber array). We used the Small Form Factor Pluggable (SFP) packaging. With the edge connector, the module could be inserted into the system dispense with bonding process.
Resumo:
Design and fabrication of a parallel optical transmitter are reported. The optimized 12 channel parallel optical transmitter,with each channel's data rate up to 3Gbit/s,is designed, assembled, and measured. A top-emitting 850nm vertical cavity surface emitting laser(VCSEL) array is adopted as the light source,and the VCSEL chip is directly wire bonded to a 12 channel driver IC. The outputs of the VCSEL array are directly butt coupled into a 12 channel fiber array. Small form factor pluggable (SFP) packaging technology is used in the module to support hot pluggable in application. The performance results of the module are demonstrated. At an operating current of 8mA, an eye diagram at 3Gbit/s is achieved with an optical output of more than 1mW.
Resumo:
A prototype 1.55-μm Si-based micro-opto-electro-mechanical-systems (MOEMS) tunable filter is fabricated, employing surface micromachining technology. Full-width-at-half-maximum (FWHM) of the transmission spectrum is 23 nm. The tuning range is 30 nm under 50-V applied voltage. The device can be readily integrated with resonant cavity enhanced (RCE) detector and vertical cavity surface emitting laser (VCSEL) to fabricate tunable active devices.
Resumo:
介绍了一个适用于甚短距离(Very Short Reach,VSR)网络传输的并行光传输系统。系统的发射部分用垂直腔面发射激光器(vERTICAL cAVITY sURFACE eMITTING lASER,vcsel)1×12列阵代替传统的边发射激光器,接收部分也采用相应的探测器列阵,并由多模光纤列阵相连接,在300m距离内以单信道1.25Gbit/s速率实现的10Gbit/s的高传输速率。
Resumo:
We have studied the growth of GaInNAs/GaAs quantum well (QW) by molecular beam epitaxy using a DC plasma as the N sourer. The N concentration was independent of the As pressure and the In concentration, but inversely proportional to the growth rate. It was almost independent of T, over the range of 400-500 degreesC, but dropped rapidly when T-g exceeded 500 degreesC. Thermally-activated N surface segregation is considered to account for the strong falloff of the N concentration. As increasing N concentration, the steep absorption edge of the photovoltage spectra of GaInNAs/GaAs QW became gentle, the full-width at half-maximum of the photoluminescence (PL) peal; increased rapidly, and a so-called S-shaped temperature dependence of PL peak energy showed up. All these were attributed to the increasing localized state as N concentration. Ion-induced damage was one of the origins of the localized state. A rapid thermal annealing procedure could effectively remote the localized state. (C) 2001 Elsevier Science D.V. All rights reserved.
Resumo:
The extraordinary transmission of the subwavelength gold grating has been investigated by the rigorous coupled-wave analysis and verified by the metal-insulator-metal plasmonic waveguide method. The physical mechanisms of the extraordinary transmission are characterized as the excitation of the surface plasmon polariton modes. The subwavelength grating integrated with the distributed Bragg reflector is proposed to modulate the phase to realize spatial mode selection, which is prospected to be applied for transverse mode selection in the vertical cavity surface-emitting laser.
Resumo:
A surface emitting microcavity was formed by sandwiching a polymer film containing PVK, Alq(3) and DCM between a distributed Bragg reflector (DBR) with a reflectivity of 99% and a silver film (300 nm). The lasing phenomenon was observed in DCM-doped PVK microcavity. The full width at half maximum (FWHM) was 0.6 nm with the peak wavelength at 603 nm. The threshold energy for lasing was estimated to be about 2.5 mu J per pulse. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
A surface emitting microcavity was formed by sandwiching a polymer film containing poly(N-vinyleabzole) (PVK). 8-hydroxyquinoline aluminium (Alq(3)) and 4-(Dicyanome thylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-Pyran(DCM) between a distributed Bragg reflector (DBR) with a reflectivity of 99% and a silver film. The sample was optically pumped with 250 ps pulses at 2 Hz repetition rate by a 355 nm line of the third harmonic of a mode-lock Nd:YAG laser. The lasing phenomenon was observed in DCM-doped PVK microcavity. The full width at half maximum (FWHM) was 3 nm with the peak wavelength at 602 nm. The threshold energy for lasing was estimated to be about 3 mu J. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The simulation of a plasmonic very-small-aperture laser is demonstrated in this paper. It is an integration of the surface plasmon structure and very-small-aperture laser (VSAL). The numerical results demonstrate that the transmission field can be confined to a spot with subwavelength width in the far field (3.5 mu m far from the emitting surface), and the output power density can be enhanced over 30 times of the normal VSAL. Such a device can be useful in the application of a high resolution far-field scanning optical microscope.
Resumo:
A tapered distributed feedback quantum cascade laser emitting at lambda similar to 8.1 mu m is reported. Utilising a tapered waveguide structure with a surface metal grating, the device exhibited singlemode operation over the temperature range of 100 to 214 K, with sidemode suppression ratio > 20 dB and a nearly diffraction limited far-field beam divergence angle of 5.4 degrees.
Resumo:
To form low-resistance Ohmic contact to p-type GaN, InGaN/GaN multiple quantum well light emitting diode wafers are treated with boiled aqua regia prior to Ni/Au (5 nm/5 nm) film deposition. The surface morphology of wafers and the current-voltage characteristics of fabricated light emitting diode devices are investigated. It is shown that surface treatment with boiled aqua regia could effectively remove oxide from the surface of the p-GaN layer, and reveal defect-pits whose density is almost the same as the screw dislocation density estimated by x-ray rocking curve measurement. It suggests that the metal atoms of the Ni/Au transparent electrode of light emitting diode devices may diffuse into the p-GaN layer along threading dislocation lines and form additional leakage current channels. Therefore, the surface treatment time with boiled aqua regia should not be too long so as to avoid the increase of threading dislocation-induced leakage current and the degradation of electrical properties of light emitting diodes
Resumo:
National Research Projects of China 60525406 60736031 60806018 60906026 2006CB604903 2007AA03Z446 2009AA03Z403
Resumo:
GaAs-based InAs quantum dots using InGaAs composition-graded metamorphic layers have been investigated by molecular beam epitaxy. Emission with the wavelength similar to 1.5 mu m from the dots was obtained at room temperature with the relatively large full width at half maximum. The emission wavelength is relatively stable when subjected to fast annealing. The number density of dots reached similar to 6 x 10(10) cm(-2). Undulated morphology was observed on the surface of the sample, which has some influence on the dot size and distribution. In epilayers, misfit dislocations were confined within the step-graded InGaAs metamorphic buffer layer. (c) 2006 Elsevier B.V. All rights reserved.