110 resultados para silicate surface chemistry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An easy surface-modified method has been developed to link -NH2 groups to the TiO2 colloidal spheres with nanoporous surface (f-TiO2). It was found that the as-prepared f-TiO2 is positively charged in neutral conditions and could act as an electrostatic anchor for nanosructures with opposite charge, Furthermore, platinum nanoparticles (Pt NPs) are successfully assembled on the f-TiO2 mainly via electrostatic interaction to fabricate a new kind of Pt NPs/TiO2 hybrid nanomaterial (f-TiO2-Pt NPs). The morphology, structure, and composition of the hybrids were characterized by the means of diverse techniques such as transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, and Raman spectra. Electrochemical experiments indicate the electrode modified with f-TiO2-Pt NPs shows prominent electrocatalytic activity toward the oxidation of hydrogen peroxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, an insulating fluorinated polyimide (F-PI) is utilized as an ultrathin buffer layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in polymer light-emitting diodes to enhance the device performance. The selective solubility of F-PI in common solvents avoids typical intermixing interfacial problems during the sequential multilayer spin-coating process. Compared to the control device, the F-PI modification causes the luminous and power efficiencies of the devices to be increased by a factor of 1.1 and 4.7, respectively, along with almost 3-fold device lifetime enhancement. Photovoltaic measurement, single-hole devices, and X-ray photoelectron spectroscopy, are utilized to investigate the underlying, mechanisms, and it is found that the hole injection barrier is lowered owing to the interactions between the PEDOT:PSS and F-PI. The F-PI modified PEDOT:PSS layer demonstrates step-up ionization potential profiles from the intrinsic bulk PEDOT:PSS side toward the F-PI-modified PEDOT:PSS surface, which facilitate the hole injection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are used as templates to synthesize regioselective polymers from enzymatic polymerization of phenol in water. About 90% of total polymeric units in the obtained polymers are the highly thermally stable oxyphenylene units. The polymer-yields are dependent on the quantities of CNTs used. On the basis of MWNT-templated enzymatic polymerization of phenol, covalent attachment of polyphenol chains to the surface of MWNT by way of a linking molecule, hydroquinone, is achieved. This approach supplies a novel way for producing high-performance polymers and for functionalization of the surface of CNT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A universal metal-molecule-metal sandwich architecture by the self-assembly of Ag nanoparticles (NPs) and Au NPs of various shapes interconnected with 4-aminothiophenol (4-ATP) molecules was presented. These Ag NPs/4-ATP/Au NPs sandwich structures were characterized by surface enhanced Raman scattering (SERS) using an off-surface plasmon resonance condition. Enhancement factors (EF) on the order of 10(8) for 9b(b(2)) vibration mode were observed for the 4-ATP self-assembled monolayers (SAMs) in such sandwich structures. The factors are 2 orders of magnitude larger than that on the monolayer of Au NPs of various shapes under similar condition. More importantly, remarkable increase in the intensity of b(2) vibrational modes, which is characteristic of the charge transfer (CT) behavior between metal NPs and 4-ATP molecules, was observed in these sandwich structures under 1064 nm excitation. The obtained EF on these sandwich structure for 9b(b(2)) is larger than that for 7a vibration mode by a factor of similar to 10(2), demonstrating the importance of the contribution of the CT mechanism and the CT behavior of metal contacts, which play a significant role in metal-molecule-metal nanosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a fast and simple method, named the potentiostatic electrodeposition technique, to deposit metal particles on the planar surface for application in metal-enhanced fluorescence. The as-prepared metallic surfaces were comprised of silver nanostructures and displayed a relatively homogeneous morphology. Atomic force microscopy and UV-visible absorption spectroscopy were used to characterize the growth process of the silver nanostructures on the indium tin oxide (ITO) surfaces. A typical 20-fold enhancement in the intensity of a nearby fluorophore, [Ru(bpy)(3)](2+), could be achieved on the silvered surfaces. In addition, the photostability of [Ru(bpy)(3)](2+) was found to be greatly increased due to the modification of the radiative decay rate of the fluorophore. It is expected that this electrochemical approach to fabricating nanostructured metallic surfaces can be further utilized in enhanced fluorescence-based applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, surface enhanced Raman scattering (SERS) of different concentrations of brilliant green (13G) on Ag nanoparticles (AgNPs) has been investigated. The results indicate that only 10(-12) M BG can be detected on AgNPs while as low as 10(-11) M BG can be detected upon the activation of AgNPs by chloride ions. The additional improvement of the detection of BG mainly derives from the increase of the electromagnetic field around AgNPs and partially from the reorientation of BG on AgNPs induced by chloride ions, which was proved by the different spectra feature in the two systems. Adsorption of BG on AgNPs has also been demonstrated in applications of living cells as optical probes based on SERS, indicating that dye-AgNPs can probe the local environment in the living cells. The related cytotoxicity measurements demonstrated that BG-AgNPs produced little cytotoxicity to the cells, which shows great potential in biornedical applications of BG labeled-AgNPs for SERS nanosensors in cells as optical probes. Meanwhile, SERS spectra of BG on AgNPs in the presence chloride ions are expected to be used in living cells as more sensitive optical probes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We reported a simple method to synthesize gold nanoparticles (NPs) by photoreducing HAuCl4 in acetic acid solution in the presence of type I collagen. It was found that the collagen takes an important role in the formation of gold NPs. The introduction of collagen made the shape of the synthesized gold nanocrystals change from triangular and hexangular gold nanoplates to size-uniform NPs. On the other hand, thanks to the special characters of collagen molecules, such as its linear nanostructure, are positively charged when the pH < 7, and the excellent self-assembly ability, photoreduced gold NPs were assembled onto the collagen chains and formed gold NPs films and networks. A typical probe molecule, 4-aminothiophenol, was used to test the surface-enhanced Raman scattering activity of these gold NPs films and networks and the results indicated good Raman activity on these substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the self-assembly of polyelectrolyte homopolymers such as poly(acrylic acid) with imogolite to generate stable tubular structures, which were several micrometers in diameter and millimeters in length with no hierarchical ordered structure. No special polymer architecture or interaction was required for the assembly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, surface enhanced Raman scattering (SERS) of different concentrations of brilliant green (13G) on Ag nanoparticles (AgNPs) has been investigated. The results indicate that only 10(-12) M BG can be detected on AgNPs while as low as 10(-11) M BG can be detected upon the activation of AgNPs by chloride ions. The additional improvement of the detection of BG mainly derives from the increase of the electromagnetic field around AgNPs and partially from the reorientation of BG on AgNPs induced by chloride ions, which was proved by the different spectra feature in the two systems. Adsorption of BG on AgNPs has also been demonstrated in applications of living cells as optical probes based on SERS, indicating that dye-AgNPs can probe the local environment in the living cells. The related cytotoxicity measurements demonstrated that BG-AgNPs produced little cytotoxicity to the cells, which shows great potential in biornedical applications of BG labeled-AgNPs for SERS nanosensors in cells as optical probes. Meanwhile, SERS spectra of BG on AgNPs in the presence chloride ions are expected to be used in living cells as more sensitive optical probes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a one-pot preparation method for a series of novel shaped gold microcrystals by simply mixing HAuCl4 with disodium salt of ethylenediaminetetraacetic acid (Na(2)EDTA). Under the different reaction temperatures, spinous structures, multipod microspheres, and rough surfaced microspheres were obtained. These microcrystals exhibit high surface-enhanced Raman scattering (SERS) activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bifunctional comonomer 4-(3-butenyl) styrene was used to synthesize crosslinked polystyrene microspheres (c-PS) with pendant butenyl groups on their surface via suspension copolymerization. Polyethylene chains were grafted onto the surface of c-PS microspheres (PS-g-PE) via ethylene copolymerizing with the pendant butenyl group on the surface of the c-PS microspheres under the catalysis of metallocene catalyst. The composition and morphology of the PS-g-PE microspheres were characterized by means of Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy. It is possible to control the content of PE grafted onto the surface of c-PS microspheres by varying the polymerization time or the initial quantity of pendant butenyl group on the surface of c-PS microspheres. Investigation on the morphology and crystallization behavior of grafted PE chains showed that different surface patterns could be formed under various crystallization conditions. Moreover, the crystallization temperature of PE chains grafted on the surface of c-PS microspheres was 6 degrees C higher than that of pure PE. The c-PS microspheres decorated by PE chains had a better compatibility with PE matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coadsorption of ferrocene-terminated alkanethiols (FcCO(2)(CH2)(8)SH, Fc=(mu(5)-C5H5)Fe(mu(5)-C5H4)) with alkylthiophene thiols (2-mercapto-3-n-octylthiophene) yields stable, electroactive self-assembled monolayers on gold. The resulting mixed monolayer provides an energetically favorable hydrophobic surface for the adsorption of the surfactant aggregates in aqueous solution. The adsorptions have been characterized via their effect on the redox properties of ferrocenyl alkanethiols immobilized as minority components in the monolayers and on the interfacial capacitance of the electrode. Surfactant adsorption causes a decrease in the overall capacitance at the electrode and dramatically shifts the redox potential for ferrocene oxidation in a positive or negative direction depending on the identity of the surfactant employed. A structural model is proposed in which the alkane chains of the adsorbed surfactants interdigitate with those of the underlying self-assembled monolayer, leading to the formation of a hybrid bilayer membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

pH-dependent processes of bovine heart ferricytochrome c have been investigated by electronic absorption and circular dichroism (CD) spectra at functionalized single-wall carbon 'nanotubes (SWNTs) modified glass carbon electrode (SWNTs/ GCE) using a long optical path thin layer cell. These methods enabled the pH-dependent conformational changes arising from the heme structure change to be monitored. The spectra obtained at functionalized SWNTs/GCE reflect electrode surface microstructure-dependent changes for pH-induced protein conformation, pK(a) of alkaline transition and structural microenvironment of the ferricytochrome c heme. pH-dependent conformational distribution curves of ferricytochrome c obtained by analysis of in situ CD spectra using singular value decomposition least square (SVDLS) method show that the functionalized SWNTs can retain native conformational stability of ferricytochrome c during alkaline transition.