169 resultados para rearrangement effect of three-body force
Resumo:
For the flame spread over thermally thin combustibles in an atmosphere, if the atmosphere cannot emit and absorb the thermal radiation (e.g. for atmosphere Of O-2-N-2), the conductive heat transfer from the flame to the fuel surface dominates the flame spread at lower ambient atmosphere. As the ambient pressure increases, the flame spread rate increases, and the radiant heat transfer from the flame to the fuel surface gradually becomes the dominant driving force for the flame spread. In contrast, if the atmosphere is able to emit and absorb the thermal radiation (e.g. for atmosphere Of O-2-CO2), at lower pressure, the heat transfer from flame to the fuel surface is enhanced by the radiation reabsorption of the atmosphere at the leading edge of the flame, and both conduction and thermal radiation play important roles in the mechanism of flame spread. With the increase in ambient pressure, the oxygen diffuses more quickly from ambient atmosphere into the flame, the chemical reaction in the flame is enhanced, and the flame spread rate increases. When the ambient pressure is greater than a critical value, the thermal radiation from the flame to the solid surface is hampered by the radiation reabsorption of ambient atmosphere with the further increase in ambient pressure. As a result, with the increase in ambient pressure, the flame spread rate decreases and the heat conduction gradually dominates the flame spread over the fuel surface.
Resumo:
The growth of highly lattice-mismatched InAs0.3Sb0.7 films on (100) GaAs Substrates by magnetron Sputtering has been investigated and even epitaxial lnAs(0.3)Sb(0.7) films have been successfully obtained. A strong effect of the growth conditions on the film structure was observed, revealing that there was a growth mechanism transition from three-dimensional nucleation growth to epitaxial layer-by-layer growth mode when increasing the substrate temperature. A qualitative explanation for that transition was proposed and the critical conditions for the epitaxial layer-by-layer growth mode were also discussed.
Resumo:
This paper studies the stability of jointed rock slopes by using our improved three-dimensional discrete element methods (DEM) and physical modeling. Results show that the DEM can simulate all failure modes of rock slopes with different joint configurations. The stress in each rock block is not homogeneous and blocks rotate in failure development. Failure modes depend on the configuration of joints. Toppling failure is observed for the slope with straight joints and sliding failure is observed for the slope with staged joints. The DEM results are also compared with those of limit equilibrium method (LEM). Without considering the joints in rock masses, the LEM predicts much higher factor of safety than physical modeling and DEM. The failure mode and factor of safety predicted by the DEM are in good agreement with laboratory tests for any jointed rock slope.
Resumo:
In this paper, the effect of particle size on the formation of adiabatic shear band in 2024 All matrix composites reinforced with 15% volume fraction of 3.5, 10 and 20 mum SiC particles was investigated by making use of split Hopkinson pressure bar (SHPB). The results have demonstrated that the onset of adiabatic shear banding in the composites strongly depends on the particle size and adiabatic shear banding is more readily observed in the composite reinforced with small particles than that in the composite with large particles. This size dependency phenomenon can be characterized by the strain gradient effect. Instability analysis reveals that high strain gradient is a strong driving force for the formation of adiabatic shear banding in particle reinforced metal matrix composites (MMCp).
Resumo:
Hard coatings on relatively soft substrate always face the danger of debonding along the interface. Interfacial stresses are considered to be the initial driving force for the interfacial debonding of the relatively strong bonded coatings. Interfacial stresses due to the mismatch of strain between the coating and substrate are simulated with FEM firstly. The distribution of the interfacial stresses is achieved, which confirms an excessive stresses concentration near the interface end. Subsequently, the redistribution of interfacial stresses is calculated for a coating with periodic segmentation cracks. Results indicate that the distribution of interfacial stresses is altered greatly with the periodic segmentation cracks. To reveal the effect of the spacing of the periodic segmentation cracks on the distribution of interfacial stresses, different crack density is modeled within the coating. It is found that that the peak values of the interfacial stresses decrease with the increase of crack density, i.e. with reduction of spacing of segmentation cracks.
Resumo:
This paper studies the effect of fissure water pressure in different fractures on the critical angle of landslide by laboratory investigation and numerical simulation in order to understand the mechanisms of fissure water pressure on landslide stability. Laboratory observations show that the effect of fissure water pressure on the critical angle of landslide is little when the distance between water-holding fracture and slope toe is three times greater than the depth of fissure water. These experimental results are also simulated by a three-dimensional face-to-face contact discrete element method. This method has included the fissure water pressure and can accurately calculate the critical angle of jointed slope when fissure water pressure in vertical sliding surface exists. Numerical results are in good agreement with experimental observations. It is revealed that the location of water-holding structural surface is important to landslide stability. The ratio of the distance between water-holding fissure and slope toe to the depth of fissure water is a key parameter to justify the effect of fissure water pressure on the critical angle of landslide.
Resumo:
Three adhesion contact models, JKR (Johnson-Kendall-Roberts), DMT (Derjaguin-Muller-Toporov) and MD (Maugis-Dugdale) are compared with the Hertz model in dealing with the nano-contact problems. It has been shown that the dimensionless load parameter, $\bar{P}=P/(\pi\Delta\gamma R)$, and the transition parameter, $\Lambda$, have significant influences on the contact stiffness (contact area) at micro/nano-scale and should not be ignored in shallow nanoindentation.
Resumo:
Three-dimensional discrete element face-to-face contact model with fissure water pressure is established in this paper and the model is used to simulate three-stage process of landslide under fissure water pressure in the opencast mine, according to the actual state of landslide in Panluo iron mine where landslide happened in 1990 and was fathered in 1999. The calculation results show that fissure water pressure on the sliding surface is the main reason causing landslide and the local soft interlayer weakens the stability of slope. If the discrete element method adopts the same assumption as the limit equilibrium method, the results of two methods are in good agreement; while if the assumption is not adopted in the discrete element method, the critical phi numerically calculated is less than the one calculated by use of the limit equilibrium method for the same C. Thus, from an engineering point of view, the result from the discrete element model simulation is safer and has more widely application since the discrete element model takes into account the effect of rock mass structures.
Resumo:
The curvature-stress relation is studied for a film-substrate bilayer with the effect of interfacial slip and compared with that of an ideal interface without interfacial slip. The interfacial slip together with the dimensions, elastic and interfacial properties of the film and substrate layers can cause a significant deviation of curvature-stress relation from that with an ideal interface. The interfacial slip also results in the so-called free edge effect that the stress, constraint force, and curvature vary dramatically around the free edges. The constant curvature as predicted by Stoney's formula and the Timoshenko model of an ideal interface is no longer valid for a bilayer with a nonideal interface. The models with the assumption of an ideal interface can also lead to an erroneous evaluation on the true stress state inside a bilayer with a nonideal interface. The extended Stoney's formula incorporating the effects of both the layer dimensions and interfacial slip is presented.
Resumo:
Molecular dynamics (MD) simulations and first-principles calculations are carried out to analyze the stability of both newly discovered and previously known phases of ZnO under loading of various triaxialities. The analysis focuses on a graphite-like phase (FIX) and a body-centered-tetragonal phase (BCT-4) that were observed recently in [0 1 (1) over bar 0]- and [0 0 0 1]-oriented nanowires respectively under uniaxial tensile loading as well as the natural state of wurtzite (WZ) and the rocksalt (RS) phase which exists under hydrostatic pressure loading. Equilibrium critical stresses for the transformations are obtained. The WZ -> HX transformation is found to be energetically favorable above a critical tensile stress of 10 GPa in [0 1 (1) over tilde 0] nanowires. The BCT-4 phase can be stabilized at tensile stresses above 7 GPa in [0 0 0 1] nanowires. The RS phase is stable at hydrostatic pressures above 8.2 GPa. The identification and characterization of these phase transformations reveal a more extensive polymorphism of ZnO than previously known. A crystalline structure-load triaxiality map is developed to summarize the new understanding. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper studies the surface melting in the atmosphere by YAG laser-guided micro-arc discharge. In three kinds of surface conditions (free, oiled, and polyethylene covered), we try to control the diameter and the power density of discharge pit. It is found that the power density of 3 x 10(6) W/cm(2) of discharge pit on the oiled surface is moderate to form the melted layer thicker than that of the others, adapting to strengthen the surface of material, and the power density of 1.07 x 10(7) W/cm(2) of discharge pit on the polyethylene-covered surface is highest to form the deepest discharge pit among them, adapting to remove the material.
Resumo:
Our recent progress in numerical studies of bluff body flow structures and a new method for the numerical analysis of near wake flow field for high Reynolds number flow are introduced. The paper consists of three parts. In part one, the evolution of wake vortex structure and variation of forces on a flat plate in harmonic oscillatory flows and in in-line steady-harmonic combined flows are presented by an improved discrete vortex method, as the Keulegan-Carpenter number (KC) varies from 2 to 40 and ratios of U-m to U-0 are of O(10(-1)), O(10) and O(10), respectively. In part 2, a domain decomposition hybrid method, combining the finite-difference and vortex methods for numerical simulation of unsteady viscous separated flow around a bluff body, is introduced. By the new method, some high resolution numerical visualization on near wake evolution behind a circular cylinder at Re = 10(2), 10(3) and 3 x 10(3) are shown. In part 3, the mechanism and the dynamic process for the three-dimensional evolution of the Karman vortex and vortex filaments in braid regions as well as the early features of turbulent structure in the wake behind a circular cylinder are presented numerically by the vortex dynamics method.
Resumo:
In this paper, the effect of the surface tension is considered carefully in the study of non-propagating solitary waves. The parameter plane of the surface tension and the fluid depth is divided into three regions; in two of them a breather soliton can be produced. In literature the parameters of breather solitons are all in one of the parameter regions. The new region reported here has been confirmed by our experiments. In the third region, the theoretical solution is a kink soliton, but a kind of the non-propagating solitary wave similar to the breather soliton was found in our experiments besides the kink soliton.
Resumo:
Fatigue crack growth and its threshold are investigated at a stress ratio of 0.5 for the three-point bend specimen made of Austenitic stainless steel. The effect of grain size on the crack tip plastic deformation is investigated. The results show that the threshold value Δkth increases linearly with the square root of grain size d and the growth rate is slower for materials with larger grain size. The plastic zone size and ratio for different grain sizes are different at the threshold. The maximum stress intensity factor is kmax and σys is the yield strength. At the same time, the characteristics of the plastic deformation development is discontinuous and anti-symmetric as the growth rate is increased from 2·10—8 to 10−7 mm/cycle.
Resumo:
The technology of laser quenching is widely used to improve the surface properties of steels in surface engineering. Generally, laser quenching of steels can lead to two important results. One is the generation of residual stress in the surface layer. In general, the residual stress varies from the surface to the interior along the quenched track depth direction, and the residual stress variation is termed as residual stress gradient effect in this work. The other is the change of mechanical properties of the surface layer, such as the increases of the micro-hardness, resulting from the changes of the microstructure of the surface layer. In this work, a mechanical model of a laser-quenched specimen with a crack in the middle of the quenched layer is developed to quantify the effect of residual stress gradient and the average micro-hardness over the crack length on crack tip opening displacement (CTOD). It is assumed that the crack in the middle of the quenched layer is created after laser quenching, and the crack can be a pre-crack or a defect due to some reasons, such as a void, cavity or a micro-crack. Based on the elastic-plastic fracture mechanics theory and using the relationship between the micro-hardness and yield strength, a concise analytical solution, which can be used to quantify the effect of residual stress gradient and the average micro-hardness over the crack length resulting from laser quenching on CTOD, is obtained. The concise analytical solution obtained in this work, cannot only be used as a means to predict the crack driving force in terms of the CTOD, but also serve as a baseline for further experimental investigation of the effect after laser-quenching treatment on fracture toughness in terms of the critical CTOD of a specimen, accounting for the laser-quenching effect. A numerical example presented in this work shows that the CTOD of the quenched can be significantly decreased in comparison with that of the unquenched. (C) 2008 Elsevier B.V. All rights reserved.