140 resultados para physiological measurements
Resumo:
A strain of microalgae (Anabaena siamensis) had been cultured in a miniaturized bioreactor during a retrievable satellite flight for 15 days. By means of remote sensing equipment installed in the satellite, we gained the growth curve of microalgae population in space every day in real time. The curve indicated that the growth of microalgae in space was slower than the control on ground. Inoculation of the retrieved microalgae culture showed that the growth rate was distinctively higher than ground control. But after several generations, both cultures indicated similar growth rates. Those data showed that algae, can adapt to space environment easily which may be valuable for designing more complex bioreactor and controlled ecological life support system in future experiment. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Freshwater Microcystis may form dense blooms in eutrophic lakes. It is known to produce a family of related cyclic hepatopeptides (microcystins, MC) that constitute a threat to aquatic ecosystems. Most toxicological studies of microcystins have focused on aquatic animals and plants, with few examining the possible effects of microcystins on phytoplankton. In this study we chose the unicellular Synechococcus elongatus (one of the most studied and geographically most widely distributed cyanobacteria in the picoplankton) as the test material and investigated the biological parameters: growth, pigment (chlorophyll-a, phycocyanin), photosynthetic activity, nitrate reductase activity, and protein and carbohydrate content. The results revealed that microcystin-RR concentrations above 100 mug (.) L-1 significantly inhibited the growth of Synechococcus elongatus. In addition, a change in color of the toxin-treated algae (chlorosis) was observed in the experiments. Furthermore, MC-RR markedly inhibited the synthesis of the pigments chlorophyll-a and phycocyanin. A drastic reduction in photochemical efficiency of PSII (F-v/F-m) was found after a 96-h incubation. Changes in protein and carbohydrate concentrations and in nitrate reductase activity also were observed during the exposure period. This study aimed to evaluate the mechanisms of microcystin toxicity on a cyanobacterium, according to the physiological and biochemical responses of Synechococcus elongatus to different doses of microcystin-RR. The ecological role of microcystins as an allelopathic substance also is discussed in the article. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Microcystis aeruginosa Kutz. 7820 was cultured at 350 and 700 muL.L-1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom-forming cyanobacterium. Doubling Of CO2 concentration in the airflow enhanced its growth by 52%-77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light-saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC-saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3- levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 muL.L-1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3- concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.
Resumo:
Superoxide dismutase activity in water hyacinth leaves was not sensitive to small changes in environmental pH, but declined markedly with greater pH changes. KCN inhibited superoxide dismutase activity, suggesting that the enzyme was mainly composed of the Cu-Zn form. Low temperature (2-degrees-C) treatment caused a decline in superoxide dismutase activity. This effect became more pronounced as the treatment time was prolonged. Furthermore, the decline was much more significant than reductions of glucose-6-phosphate dehydrogenase activity or respiration under comparable conditions. With increasing physiological age, superoxide dismutase activity declined and was significantly lower in old than in young leaves. Therefore, superoxide dismutase activity might be employed as one of physiological parameters in studying leaf senescence.
Resumo:
A two-color time-resolved Kerr rotation spectroscopy system was built, with a femtosecond Ti:sapphire laser and a photonic crystal fiber, to study coherent spin transfer processes in an InGaAs/GaAs quantum well sample. The femtosecond Ti:sapphire laser plays two roles: besides providing a pump beam with a tunable wavelength, it also excites the photonic crystal fiber to generate supercontinuum light ranging from 500 nm to 1600 nm, from which a probe beam with a desirable wavelength is selected with a suitable interference filter. With such a system, we studied spin transfer processes between two semiconductors of different gaps in an InGaAs/GaAs quantum well sample. We found that electron spins generated in the GaAs barrier were transferred coherently into the InGaAs quantum well. A model based on rate equations and Bloch-Torrey equations is used to describe the coherent spin transfer processes quantitatively. With this model, we obtain an effective electron spin accumulation time of 21 ps in the InGaAs quantum well.
Resumo:
We investigate the dependence of the differential reflection on the structure parameters of quantum dot (QD) heterostructures in pump-probe reflection measurements by both numerical simulations based on the finite-difference time-domain technique and theoretical calculations based on the theory of dielectric films. It is revealed that the value and sign of the differential reflection strongly depend on the thickness of the cap layer and the QD layer. In addition, a comparison between the carrier dynamics in undoped and p-doped InAs/GaAs QDs is carried out by pump-probe reflection measurements. The carrier capture time from the GaAs barrier into the InAs wetting layer and that from the InAs wetting layer into the InAs QDs are extracted by appropriately fitting differential reflection spectra. Moreover, the dependence of the carrier dynamics on the injected carrier density is identified. A detailed analysis of the carrier dynamics in the undoped and p-doped QDs based on the differential reflection spectra is presented, and its difference with that derived from the time-resolved photoluminescence is discussed. (C) 2008 American Institute of Physics.
Resumo:
Undoped, Zn-doped and Te-doped GaSb with different concentrations were investigated by positron lifetime spectroscopy (PAS) and the Doppler broadening technique. Detection sensitivity of the latter technique was improved by using a second Ge-detector for the coincident detection of the second annihilation photon. PAS measurement indicated that there were vacancies in these samples. By combining the Doppler broadening measurements, the native acceptor defects in GaSb were identified to be predominantly Ga vacancy (V-Ga) related defects.
Resumo:
The admixture of linear and circular photogalvanic effects and (CPGEs) in AlxGa1-xN/GaN heterostructures has been investigated quantitatively by near-infrared irradiation at room temperature. The spin-based photocurrent that the authors have observed solidly indicates the sizable spin-orbital interaction of the two-dimensional electron gas in the heterostructures. Further analysis shows consistency between studies by optical and magnetic (Shubnikov de-Haas) measurements on the spin-orbital coupling effects among different AlxGa1-xN/GaN heterostructures, indicating that the CPGE measurement is a good way to investigate the spin splitting and the spin polarization in semiconductors. (C) 2007 American Institute of Physics.
Resumo:
An accurate and simple technique for measuring the input reflection coefficient and the frequency response of semiconductor laser diode chips is proposed and demonstrated. All the packaging parasitics could be obtained accurately using a calibrated probe, and the impedance of the intrinsic diode chip is deduced from the directly measured reflection coefficient. The directly measured impedance of a laser diode is affected strongly by the short bond wire. In the frequency response (S(2)1) measurements of semiconductor laser diode chips, the test fixture consists of a microwave probe, a submount, and a bond wire. The S-parameters of the probe could be determined using the short-open-match (SOM) method. Both the attenuation and the reflection of the test fixture have a strong influence on the directly measured frequency response, and in our proposed technique, the effect of test fixture is completely removed.
Resumo:
Shubnikov-de Haas measurements were carried out for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structures grown on GaAs substrates with different indium contents and/or different Si delta-doping concentrations. Zero-field (B-->0) spin splitting was found in samples with stronger conduction band bending in the InGaAs well. It was shown that the dominant spin splitting mechanism is attributed to the contribution by the Rashba term. We found that zero-field spin splitting not only occurs in the ground electron subband, but also in the first excited electron subband for a sample with Si delta-doping concentration of 6x10(12) cm(-2). We propose that this In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structure grown on GaAs may be a promising candidate spin-polarized field-effect transistors. (C) 2002 American Institute of Physics.
Resumo:
An anomalous behavior was observed in X-ray photoelectron Spectroscopy (XPS) depth profile measurements conducted on CeO2/Si epilayers grown by ion beam epitaxy (IBE): the signals of Ce3+ and Ce4+ co-exist, and the ratio between them increases during the etching time and then tends to maintain a constant level before increasing again. The results of X-ray Diffraction (XRD), Auger Electron Spectroscopy (AES), and Rutherford Back-Scattering (RES) measurements proved that the reduction chemical reaction of CeO2 is induced by ion-etching. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
In a search for the mechanism of the induced reduction reaction that occurred in X-ray photoelectron Spectroscopy (XPS) depth profiles measured experimentally on CeO2/Si epilayers grown by ion beam epitaxy (IBE), several possibilities have been checked. The first possibility, that the X-ray induces the reaction, has been ruled out by experimentation. Other possible models for the incident-ion induced reaction, one based on short-range interaction (direct collision) and the other based on long-range potential accompanied with the incident-ions, have been tested by simulation on computer. The results proved that the main mechanism is the former, not the latter. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The ability of the Evpatoria RT-70 radar complex to perform research on space debris was investigated in four trial experiments during 2001-2003. The echo-signals of 25 objects at geostationary, highly elliptical and medium-altitude orbits were recorded on magnetic tapes at radio telescopes in Russia, Italy, China and Poland. The multi-antenna system configuration gives potential to supplement the classic radar data with precise angular observations using the technique of Very Long Baseline Interferometry. The first stage of such processing was fulfilled by the correlator in N. Novgorod, Russia. The cross-correlation of transmitted and received signals was obtained for the 11 objects on the Evpatoria-Bear Lakes, Evpatoria-Urumqi and Evpatoria-Noto baselines. This activity also promoted developing the optical observations of geostationary objects, conducted for the improvement of the radar target ephemerides. (C) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.