340 resultados para photoluminescence mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the observation of a deformation twin formed by a recently proposed self-thickening, cross-slip twinning mechanism. This observation verifies one more twinning mechanism, in addition to those reported before, in nanocrystalline face-centered-cubic metals. In this mechanism, once the first Shockley partial is emitted from a grain boundary, and cross slips onto another slip plane, a deformation twin could nucleate and grow in both the primary and cross-slip planes without requiring the nucleation of additional Shockley partials from the grain boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic coatings are produced on aluminum alloy by autocontrol AC pulse Plasma Electrolytic Oxidation (PEO) with stabilized average current. Transient signal gathering system is used to study the current, voltage, and the transient wave during the PEO process. SEM, OM, XRD and EDS are used to study the coatings evolution of morphologies, composition and structure. TEM is used to study the micro profile of the outer looser layer and inner compact layer. Polarization test is used to study the corrosion property of PEO coatings in NaCl solution. According to the test results, AC pulse PEO process can be divided into four stages with different aspects of discharge phenomena, voltage and current. The growth mechanism of AC PEO coating is characterized as anodic reaction and discharge sintering effect. PEO coating can increase the corrosion resistance of aluminum alloy by one order or two; however, too long process time is not necessarily needed to increase the corrosion resistance. In condition of this paper, PEO coating at 60 min is the most protective coating for aluminum alloy substrate. (C) 2008 Elsevier B.V. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regular zinc oxide (ZnO) tetrapods with a flat plane have been obtained on Si(1 0 0) substrate via the chemical vapour deposition approach. The x-ray diffraction result suggests that these tetrapods are all single crystals with a wurtzite structure that grow along the (0 0 0 1) direction and corresponding electron backscatter diffraction analysis reveals the crystal orientation of growth and exposed surface. Furthermore, we find some ZnO tetrapods with some legs off and the angles between every two legs are measured with the aid of scanning electron microscopy and image analysis, which benefit to reveal the structure of ZnO tetrapods joint. The structure model and growth mechanism of ZnO tetrapods are proposed. Besides, the stable model of the interface was obtained through the density-functional theory calculation and the energy needed to break the twin plane junction was calculated as 5.651 J m(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macroscopic strain was hitherto considered a necessary corollary of deformation twinning in coarse-grained metals. Recently, twinning has been found to be a preeminent deformation mechanism in nanocrystalline face-centered-cubic (fcc) metals with medium-to-high stacking fault energies. Here we report a surprising discovery that the vast majority of deformation twins in nanocrystalline Al, Ni, and Cu, contrary to popular belief, yield zero net macroscopic strain. We propose a new twinning mechanism, random activation of partials, to explain this unusual phenomenon. The random activation of partials mechanism appears to be the most plausible mechanism and may be unique to nanocrystalline fcc metals with implications for their deformation behavior and mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite element analysis is employed to investigate void growth embedded in elastic-plastic matrix material. Axisymmetric and plane stress conditions are considered. The simulation of void growth in a unit cell model is carried out over a wide range of triaxial tensile stressing or large plastic straining for various strain hardening materials to study the mechanism of void growth in ductile materials. Triaxial tension and large plastic strain encircling around the void are found to be of most importance for driving void growth. The straining mode of incremental loading which favors the necessary strain concentration around void for its growth can be characterized by the vanishing condition of a parameter called "the third invariant of generalized strain rate". Under this condition, it accentuates the internal strain concentration and the strain energy stored/dissipated within the material layer surrounding the void. Experimental results are cited to justify the effect of this loading parameter. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional ZnO nanowall networks were grown on ZnO-coated silicon by thermal evaporation at low temperature without catalysts or additives. All of the results from scanning electronic spectroscope, X-ray diffraction and Raman scattering confirmed that the ZnO nanowalls were vertically aligned and c-axis oriented. The room-temperature photoluminescence spectra showed a dominated UV peak at 378 nm, and a much suppressed orange emission centered at similar to 590 nm. This demonstrates fairly good crystal quality and optical properties of the product. A possible three-step, zinc vapor-controlled process was proposed to explain the growth of well-aligned ZnO nanowall networks. The pre-coated ZnO template layer plays a key role during the synthesis process, which guides the growth direction of the synthesized products. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pattern selection of one-dimensional coupled map lattices is studied in this paper. It is shown by spatiotemporal variable separation that there exists a threshold wavelength in pattern selection which possesses wave-like structures in space and periodic chaotic motion in time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a damage function defined by the residual strength of spalled specimens of an aluminium alloy is given to characterize the spallation of the material. Based on this function a simple method for continuously describing the spallation may be developed. Stress wave profiles showing the signal of spallation were successfully obtained with carbon gauges. Microscopic observations of the spalled aluminium alloy specimens reveal that the nucleation of spallation initiates from cracking of the second phase particles. Spallation is a process of crack nucleation, growth and coalescence to final, complete disintegration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the two-dimensional flow pattern of particles in consolidation process under explosive-implosive shock waves has been performed to further understand the mechanism of shock-wave consolidation of metal powder, in which bunched low-carbon steel wires were used instead of powder. Pressure in the compact ranges from 6 to 30 GPa. Some wires were electroplated with brass, some pickled. By this means, the flow pattern at particle surfaces was observed. The interparticle bonding and microstructure have been investigated systematically for the consolidated specimens by means of optical and electron microscopy, as well as by microhardness. The experimental results presented here are qualitatively consistent with Williamson's numerical simulation result when particle arrangement is close packed, but yield more extensive information. The effect of surface condition of particle on consolidation quality was also studied in order to explore ways of increasing the strength of the compacts. Based on these experiments, a physical model for metal powder shock consolidation has been established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is suggested that the oscillation of thermocapillary convection may be excited by the buoyancy instability. By means of numerical simulation of the finite-element method, the temperature distributions in the liquid bridge are qualitatively analyzed. The temperature gradient in a certain flow region of liquid bridge may turn to be parallel to the direction of gravity when the temperature difference △T between two boundary rods of liquid bridge is larger than the critical value. The buoyancy instability may be excited, and then the thermocapillary oscillatory convection appears, as the temperature difference increases further. The distribution of the critical Marangoni number in the micro-gravity environment is derived from the data on the ground experiments. The results show that the onset of thermocapillary oscillatory convection is delayed in the case of smaller typical scale of liquid bridge and lower gravity environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel possibility to determine the temperature, density and velocity simultaneously in gas flows by measuring the average value, amplitude of modulation and phase shift of the photoluminescence excited by a temporally or spatially modulated light source is investigated. Time-dependent equations taking the flow, diffusion, excitation and decay into account are solved analytically. Different experimental arrangements are proposed. Measurements of velocity with two components, and temporal and spatial resolutions in the measurements are investigated. Numerical examples are given for N z with biacetyl as the seed gas. Practical considerations for the measurements and the relation between this method and some existing methods of lifetime measurement are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a complete set of MHD equations have been solved by numerical calculations in an attempt to study the dynamical evolutionary processes of the initial equilibrium configuration and to discuss the energy storage mechanism of the solar atmosphere by shearing the magnetic field. The initial equilibrium configuration with an arch bipolar potential field obtained from the numerical solution is similar to the configuration in the vicinity of typical solar flare before its eruption. From the magnetic induction equation in the set of MHD equations and dealing with the non-linear coupling effects between the flow field and magnetic field, the quantitative relationship has been derived for their dynamical evolution. Results show that plasma shear motion at the bottom of the solar atmosphere causes the magnetic field to shear; meanwhile the magnetic field energy is stored in local regions. With the increase of time the local magnetic energy increases and it may reach an order of 4×10^25 J during a day. Thus the local storage of magnetic energy is large enough to trigger a big solar flare and can be considered as the energy source of solar flares. The energy storage mechanism by shearing the magnetic field can well explain the slow changes in solar active regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The statistical correlation between an eruptive prominence and the coronal transient associated with this prominence implies that there should be a relationship between these two kinds of dynamical processes. This paper analyzes the dynamical effect of a plasma

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From observed data on lithospheric plates, a unified empirical law for plate motion,valid for continental as well as oceanic plates, is obtained in the following form: The speedof plate motion U depends linearly on a geometric parameter T_d, ratio of the sum of effectiveridge length and trench arc length to the sum of area of continental part of plate and total areaof cold sinking slab. Based on this unified law, a simple mechanical analysis shows that, themain driving forces for lithospheric plates come from push along the mid-ocean ridge andpull by the cold sinking slab, while the main drag forces consist of the viscous traction beneaththe continental part of plate and over both faces of the sinking slab. Moreover, the specific-push along ridge and pull by slab are found to be of equal magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with in detail the permanence of the spiral structure of galaxies andthe characters of waser mechanism. A simplified model of galaxy is adopted. Variousdynamical characters of density waves are studied using numerical calculation method. Theresults verify very well the switch character f waser and the tunnel effect of density wavesat the potential barrier of corotation circle as is shown in a previous work of the author.