162 resultados para paralytic shellfish poisoning (PSP)
Resumo:
[Objective] The research aimed to reveal the effects of excessive Mg2+ on the germination characteristics of maize and soybean. [Method] Eleven concentration gradients of Mg2+ including 0,40,80,120,160,200,240,280,320,360 and 400 mmol/L were set up to study the effects of different treatments on such indices as the germination potential,germination rate,fresh weight,dry weight,root length,plant height and stem diameter of maize and soybean. [Result] With the increasing of Mg2+ concentration,the germination of maize delayed and the germination rate of soybean obviously decreased,reaching the significant difference at 0.05 level. When Mg2+ concentration increased,the fresh weight and dry weight of maize and soybean decreased,but maize and soybean showed some adaptability. The growth of radicles and seedlings in maize and soybean were obviously inhibited by Mg2+,and atrophy and dysplasia phenomena appeared. [Conclusion] Excessive Mg2+ stress has different effects on the germination potential and germination rate of different crops and has obvious poisoning effects on the root and stem growth of crops.
Resumo:
We firstly reported a novel polymer matrix fabricated by type I collagen and polymers, and this matrix can be used as nanoreactors for electrodepositing platinum nanoclusters (PNCs). The type I collagen film has a significant effect on the growth of PNCs. The size of the platinum nanoparticles could be readily tuned by adjusting deposition time, potential and the concentration of electrolyte, which have been verified by field-emitted scanning electron microscopy (FE-SEM). Furthermore, cyclic voltammetry (CV) has demonstrated that the as-prepared PNCs can catalyze methanol directly with higher activity than that prepared on PSS/PDDA film, and with better tolerance to poisoning than the commercial E-TEK catalyst. The collagen-polymer matrix can be used as a general reactor to electrodeposit other metal nanostructures.
Resumo:
Electrospun carbon nanofiber-supported bimetallic PtxAu100-x electrocatalysts (PtxAu100-x/CNF) were prepared by electrochemical codeposition method. The composition of PtAu bimetallic nanoparticles could be controlled by varying the ratio of H2PtCl6 and HAuCl4. Scanning electron microscopy images showed that bimetallic nanoparticles had coarse surface morphology with high electrochemically active surface areas. X-ray diffraction analysis testified the formation of PtAu alloys. PtxAu100-x/CNF electrocatalysts exhibited improved electrocatalytic activities towards formic acid oxidation by providing the selectivity of the reaction via dehydrogenation pathway and suppressing the formation/adsorption of poisoning CO intermediate, indicating that PtxAu100-x/CNF is promising electrocatalyst in direct formic acid fuel cells.
Resumo:
Herein, homogenously partial sulfonation of polystyrene (PSP) was performed. An effective electrochemiluminescence (ECL) sensor based on PSP with carbon nanotube (CNTs) composite film was developed. Cyclic voltammetry and electrochemical impendence spectroscopy were applied to characterize this composite film. The PSP was used as an immobilization matrix to entrap the ECL reagent Ru(bpy)(3)(2+) due to the electrostatic interactions between sulfonic acid groups and Ru(bpy)(3)(2+) cations. The introduction of CNTs into PSP acted not only as a conducting pathway to accelerate the electron transfer but also as a proper matrix to immobilize Ru(bpy)(3)(2+) on the electrode by hydrophobic interaction. Furthermore, the results indicated the ECL intensity produced at this composite film was over 3-fold compared with that of the pure PSP film due to the electrocatalytic activity of the CNTs. Such a sensor was verified by the sensitive determinations of 2-(dibutylamino)ethanol and tripropylamine.
Resumo:
In this work, a new promoter, tetrasulfophthalocyanine (FeTSPc), one kind of environmental friendly material, was found to be very effective in both inhibiting self-poisoning and improving the intrinsic catalysis activity, consequently enhancing the electro-oxidation current during the electro-oxidation of formic acid. The cyclic voltammograms test showed that the formic acid oxidation peak current density has been increased about 10 times compared with that of the Pt electrode without FeTSPc. The electrochemical double potential step chronoamperometry measurements revealed that the apparent activity energy decreases from 20.64 kJ mol(-1) to 17.38 kJ mol(-1) after Pt electrode promoted by FeTSPc. The promoting effect of FeTSPc may be owed to the specific structure and abundant electrons of FeTSPc resulting in both the steric hindrance of the formation of poisoning species (CO) and intrinsic kinetic enhancement. In the single cell test, the performance of DFAFC increased from 80 mW cm(-2) mg(-1) (Pt) to 130 mW cm(-2) mg(-1) after the anode electrode adsorbed FeTSPc.
Resumo:
A glassy carbon electrode (GCE) modified with palladium provides excellent electrocatalytic oxidation of hydrogen peroxide. When the electrolyte contains palladium chloride and glucose oxidase, the GCE can be modified by electrochemical codeposition at a given potential. The resulting modified surface was coated with a thin film of Nation to form a glucose sensor. Such a glucose sensor was successfully used in the flow-injection analysis of glucose with high stability and anti-poisoning ability. It gave a detection limit of 1 X 10(-7) M injected glucose, with a linear concentration range of 0.001-8 mM. There is no obvious interference from substances such as ascorbate and saccharides.
Resumo:
A rapid rotation-scan method was used for the electrocatalytic oxidation of H2O2 at a cobalt protoporphyrin modified pyrolytic graphite electrode (CoPP/PG). The rate constant of H2O2 oxidation at the CoPP/PG electrode at different potentials and in different pH solutions was measured. The variation of catalytic activity with reaction charges (Q) passed through the electrode was analyzed. This provided a convenient electrochemical method to study the passivation and poisoning of catalytic sites with time.
Resumo:
Double-stranded RNA (dsRNA) is a virus-associated molecular pattern which induces antiviral innate immune responses and RNA interference (RNAi) in mammals. In invertebrates, RNAi phenomenon has been widely studied, but dsRNA-induced innate immune response is seldom reported. In the present study, two different dsRNAs specific for green fluorescent protein (GFP) and the putative D1 protein of photosystem II (NoPSD) from Nannochloropsis oculata, were employed to challenge Chinese mitten crab Eriocheir sinensis. The temporal changes of phenoloxidase (PO), acid phosphatase (ACP), superoxide dismutase (SOD) and malondialdehyde (MDA) content, as well as the mRNA expression of some immune-related genes were examined in order to estimate the effect of dsRNAs on the innate immunity of E. sinensis. The activities of PO, ACP and SOD significantly increased after dsRNA treatment, whereas malondialdehyde (MDA) content did not change significantly. Among the examined genes, only the mRNA expression of EsALF, an antibacterial peptide in E. sinensis, was significantly up-regulated (about 5 fold, P < 0.05) at 12 h after dsRNA treatment, while no significant expression changes were observed among the other immune genes. The increase of PO, ACP and SOD activities, and mRNA expression level of EsALF after dsRNA stimulation indicate that phenoloxidase, hydrolytic enzyme, antioxidation and EsALF were involved in dsRNA-induced innate immunity, suggesting that broad-spectrum immune responses could be induced by dsRNA in E. sinensis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Clip domain serine protease (cSP), characterized by conserved clip domains, is a new serine protease family identified mainly in arthropod, and plays important roles in development and immunity. In the present study, the full-length cDNA of a cSP (designated EscSP) was cloned from Chinese mitten crab Eriocheir sinensis by expressed sequence tags (ESTs) and PCR techniques. The 1380 bp EscSP cDNA contained a 1152 bp open reading frame (ORF) encoding a putative cSP of 383 amino acids, a 5'-untranslated region (UTR) of 54 bp, and a 3'-UTR of 174 bp. Multiple sequence alignment presented twelve conserved cysteine residues and a canonical catalytic triad (His(185), Asp(235) and Ser(332)) critical for the fundamental structure and function of EscSP. Two types of cSP domains, the clip domain and tryp_spc domain, were identified in the deduced amino acids sequence of EscSP. The conservation characteristics and similarities with previously known cSPs indicated that EscSP was a member of the large cSP family. The mRNA expression of EscSP in different tissues and the temporal expression in haemocytes challenged by Listonella anguillarum were measured by real-time RT-PCR. EscSP mRNA transcripts could be detected in all examined tissues, and were higher expressed in muscle than that in hepatopancreas. gill, gonad, haemocytes and heart. The EscSP mRNA expression in haemocytes was up-regulated after L anguillarum challenge and peaked at 2 h (4.96 fold, P < 0.05) and 12 h (9.90 fold, P < 0.05). Its expression pattern was similar to prophenoloxidase (EsproPO), one of the components of crab proPO system found in our previous report. These results implied that EscSP was involved in the processes of host-pathogen interaction probably as one of the proPO system members. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Chinese mitten crab Eriocheir sinensis is one of the most important aquaculture crustacean species in China. A cDNA library was constructed from hemocytes of E. sinensis challenged with the mixture of Listonella anguillarum and Staphylococcus aureus, and randomly sequenced to collect genomic information and identify genes involved in immune defense response. Single-pass 5' sequencing of 10368 clones yielded 7535 high quality ESTs (Expressed Sequence Tags) and these ESTs were assembled into 2943 unigenes. BLAST analysis revealed that 1706 unigenes (58.0% of the total) or 4593 ESTs (61.0% of the total) were novel genes that had no significant matches to any protein sequences in the public databases. The rest 1237 unigenes; (42.0% of the total) were closely matched to the known genes or sequences deposited in public databases, which could be classed into 20 or 23 classifications according to "molecular function" or "biological process" respectively based on the Gene Ontology (GO). And 221 unigenes (7.5% of all 2943 unigenes, 17.9% of matched unigenes) or 969 ESTs (12.9% of all 7535 ESTs, 32.9% of matched ESTs) were identified to be immune genes. The relative higher proportion of immune-related genes in the present cDNA library than that in the normal library of E. sinensis and other crustaceans libraries, and the differences and changes in percentage and quantity of some key immune-related genes especially the immune inducible genes between two E. sinensis cDNA libraries may derive from the bacteria challenge to the Chinese mitten crab. The results provided a well-characterized EST resource for the genomics community, gene discovery especially for the identification of host-defense genes and pathways in crabs as well as other crustaceans. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Edwardsiella tarda is a severe aquaculture pathogen that can infect many important fish species cultured worldwide. The aim of this study was to evaluate the vaccine potential of an E. tarda antigen, Eta21, which was identified from a pathogenic E. tarda strain via the method of in vivo-induced antigen technology (IVIAT). Eta21 is 510-amino acid in length and shares similar to 58% sequence identity with a putative peptidase of several bacterial species. eta21 was subcloned into Escherichia colt, and recombinant Eta21 was purified as a histidine-tagged protein. When used as a subunit vaccine, purified recombinant Eta21 was effective against lethal E. tarda challenge in a Japanese flounder model. In order to improve the immunoprotective efficacy of Eta21, the chimera AgaV-Eta21 was constructed, which consists of Eta21 fused in-frame to the secretion domain of AgaV, an extracellular beta-agarase. E. coli DH5 alpha harboring plasmid pTAET21, which constitutively expresses agaV-eta21, was able to produce and secret AgaV-Eta21 into the extracellular milieu. Vaccination of Japanese flounder with live DH5 alpha/pTAET21 elicited immunoprotection that is significantly higher in level than that induced by vaccination with purified recombinant Eta21. Vaccination with DH5 alpha/pTAET21 and recombinant Eta21 both induced the production of specific serum antibodies at four to eight weeks post-vaccination. Taken together, these results demonstrate that Eta21, especially that delivered by DH5 alpha/pTAET21, is an effective vaccine candidate against E. tarda infection. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Tumor necrosis factor receptors (TNFRs) are a superfamily of proteins characterized by the unique cysteine-rich domain (CRD) and their important roles in diverse physiological and pathological events such as inflammation, apoptosis, autoimmunity and organogenesis. The first member of the molluscan TNFR family, designated as CfTNFR, was identified from Zhikong scallop Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfTNFR was of 1334 bp, consisting of a 5' UTR of 17 bp, a 3'UTR of 69 by with a poly (A) tail, and an open reading frame (ORE) of 1248 by encoding a polypeptide of 415 amino acids with a theoretical isoelectric point of 8.33 and predicted molecular weight of 47.07 kDa. There were a signal peptide, a CRD, a transmembrane region and a death domain in the deduced amino acid sequence of CfTNFR, suggesting that it was a typical type 1 membrane protein. The high identities (22-40%) of CfTNFR with other TNFR superfamily members indicated that CfTNFR should be a member of TNFR superfamily, and moreover, it should be the first death domain-containing TNFR found in invertebrates. Phylogenetic analysis revealed that CfTNFR was closely related to TNFR-like proteins from Strongylocentrotus purpuratus, Drosophila melanogaster and Ciona intestinalis, and they formed a separate branch apart from vertebrate TNFRs. The spatial expression of CfTNFR transcripts in healthy and bacteria challenged scallops was examined by quantitative real-time PCR. CfTNFR transcripts could be detected in all tested tissues, including haemocytes, gonad, gill, mantle and hepatopancreas, and significantly up-regulated in the tissues of gonad, gill, mantle and hepatopancreas after Listonella anguillarum challenge, indicating that CfTNFR was constitutive and inducible acute-phase protein involved in immune defence. The present results suggested the existence of the TNFR-like molecules and TNF-TNFR system in low invertebrates, and provided new insights into the role of CfTNFR in scallop innate immune responses to invading microorganisms. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Lysozyme functions as a crucial biodefence effector against the infection of bacterial pathogens in innate immunity. The nucleotide sequence polymorphisms in promoter region of a nuclear goose type lysozyme gene from Zhikong scallop Chlamys farreri (designated as CFLysG) were investigated to explore their association with susceptibility/resistance to Listonella anguillarum infection. Eight sites of single nucleotide polymorphisms (SNPs) and two sites of insert-deletion (ins-del) polymorphisms were identified in the promoter region of CFLysG. Two of them, -753 TATCTCGATCAGG ins-del polymorphism and -391 A-G SNP were selected to analyze their distribution in the susceptible and resistant stocks, which were identified according to the survival time after L. anguillarum challenge. Using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), two genotypes were found at each site, which were ins/del and ins/ins at locus -753, and A/A and A/G at locus -391, respectively. The -753 ins/del genotype was more prevalent in the resistant stock than that in the susceptible stock, 30% vs 16.67% in frequency, but there was no significant difference in the frequency distribution between these two stocks (P=0.15). In contrast, the frequency of -391A/G genotype in the resistant stock was significantly higher (30%) than that in the susceptible stock (7.14%) (P=0.007), indicating a significant association with the resistance of Zhikong scallop to L anguillarum. To confirm the presumption, another independent challenge experiment was performed, in which the cumulative mortality of scallops with -391 A/A genotype (96.8%) was significantly higher than those with -391 A/G genotype (64.5%) (P=0.001), which further validate the association between -391 A/G genotype and the resistance of Zhikong scallop to L anguillarum. These results suggested that the -391 A/G could be a potential marker applied in future selection of Zhikong scallop with enhanced resistance to L anguillarum. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Molluscan shells may display a variety of colors, which formation, inheritance, and evolutionary significance are not Well understood. Here we report a new variant of the Pacific abalone Haliotis discus hannai that displays a novel orange shell coloration (O-type) that is clearly distinguishable from the Wild green-shelled abalone (G-type). Controlled mating experiments between O- and G-type abalones demonstrated apparent Mendelian segregations (1:1 or 3:1) in shell colors in F-2 families, which support the notion that the O- and G-types are under strict genetic control at a single locus With a recessive o (for orange shell) allele and a dominant G (for green shell) allele. Feeding with different diets caused modifications of shell color within each genotype, ranging from orange to yellow for O-type and green to dark-brown for the G-type, without affecting the distinction between genotypes. A previously described bluish-purple (B-type) shell color was found in one of the putative oo X oG crosses, suggesting that the B-type may be it recessive allele belonging to the same locus. The new O-type variant had no effect on the growth of Pacific abalone on the early seed-stage. This Study demonstrates that shell color in Pacific abalone is subject to genetic control as well as dietary modification, and the latter probably offers selective advantages in camouflage and predator avoidance.
Resumo:
Arthropod defence responses (e.g. prophenoloxidase (proPO) activation and Toll pathway initiation) are mediated by serine proteinase cascades and regulated by serpins in haemolymph. A serpin (Fc-serpin) cDNA was cloned from the haemocytes of Fenneropenaeus chinensis by rapid amplification of cDNA ends (RACE) PCR and haemocyte cDNA library screening. The full-length cDNA consists of 1734 bp, encoding 411 amino acids with a calculated molecular mass of 46.55 kDa and a theoretical isoelectric point of 7.70. Fc-serpin contains a typical serpin-like homologue (serine proteinase inhibitors domain). The deduced protein contains a putative signal peptide of 19 amino acids and the serpin's signature sequence ((FHCNRPFLFLI389)-F-379). Fc-serpin showed some identity with Pacifastacus leniusculus serpin (42%) and Manduca sexta serpin-6 (34%). The reactive centre loop (RCL) sequences of Fc-serpin, P leniusculus serpin, M. sexta serpin-6 and Bombyx mori serpin-2 are highly similar. An Arg at the PI position of the reactive site indicates that Fc-serpin may have inhibitory activity against prophenoloxidase activating proteinase (PAP) and clotting enzyme. Transcripts of Fc-serpin mRNA were mainly detected in haemocytes and the lymphoid organ by RT-PCR. The variation of the mRNA transcription level in haemocytes followed by artificial infection with bacteria OF white spot syndrome virus (WSSV) was quantified by SYBR Green real-time PCR analysis. Expression profiles of Fc-serpin greatly fluctuated after challenge. This work represents the first report Of a serpin in penaeid shrimp. The data provide clues that Fc-serpin might play potential roles in the innate immunity of shrimp. (C) 2008 Elsevier Ltd. All rights reserved.