82 resultados para microwave oven
Resumo:
With the effective medium approximation theory of composites, a remedial model is proposed for estimating the microwave emissivity of sea surface under wave breaking driven by strong wind on the basis of an empirical model given by Pandey and Kakar. In our model, the effects of the shapes of seawater droplets and the thickness of whitecap layer (i.e. a composite layer of air and sea water droplets) over the sea surface on the microwave emissivity are investigated by calculating the effective dielectric constant of whitecaps layer. The wind speed is included in our model, and the responses of water droplets shapes, such as sphere and ellipsoid, to the emissivity are also discussed at different microwave frequencies. The model is in good agreement with the experimental data of microwave emissivity of sea surface at microwave frequencies of 6.6, 10.7 and 37GHz.
Resumo:
A method of hydride generation-atomic fluorescence spectrometry was proposed in the present paper for the determination of trace arsenic and selenium in jellyfish. The samples were treated by the combination of microwave digestion and lyophilization. The optimal conditions for treating and analyzing samples were established. The problem of the effect of the superfluous acid in the digesting solution on the results was solved, and the influence of coexisting foreign ions on the determination of arsenic and selenium was investigated. The accuracy of the method was confirmed by the method of standard additions. This method proved to be simple, rapid and repeatable, and is suitable for the analysis of biologic samples containing water.
Resumo:
The effect of inorganic salts such as sodium chloride on the hydrolysis of chitosan in a microwave field was investigated. While it is known that microwave heating is a convenient way to obtain a wide range of products of different molecular weights only by changing the reaction time and/or the radiation power, the addition of some inorganic salts was shown to effectively accelerate the degradation of chitosan under microwave irradiation. The molecular weight of the degraded chitosan obtained by microwave irradiation was considerably lower than that obtained by traditional heating. Moreover, the molecular weight of degraded chitosan obtained by microwave irradiation assisted under the conditions of added salt was considerably lower than that obtained by microwave irradiation without added salt. Furthermore, the effect of ionic strength of the added salts was not linked with the change of molecular weight. FTIR spectral analyses demonstrated that a significantly shorter time was required to obtain a satisfactory molecular weight by the microwave irradiation-assisted inorganic salt method than by microwave irradiation without inorganic salts and conventional technology. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper microwave radiation has been used to introduce N-sulfo and O-sulfo groups into chitosan with a thigh degree of substitution and low-molecular weight. The sulfation of chitosan was performed in microwave ovens. It was found that microwave heating is a convenient way to obtain a wide range of products of different degrees of substitution and molecular weight only by changing reaction time or/and radiation power. Moreover, microwave radiation accelerated the degradation of sulfated chitosan, and the molecular weight of sulfated chitosan was considerably lower than that obtained by traditional heating. There are no differences in the chemical structure of sulfated chitosan obtained by microwave and by conventional technology. FTIR and C-13 NMR spectral analyses demonstrated that a significantly shorter time is required to obtain a satisfactory degree of substitution and molecular weight by microwave radiation than by conventional technology. In this present paper, we also determined antioxidant activity of low-molecular-weight and high-sulfate-content chitosans (LCTS). The results showed LCTS could scavenge superoxide and hydroxyl radical. Its IC50 is 0.025 and 1.32mg/mL, respectively. It is a potential antioxidant in vitro. (C) 2004 Published by Elsevier Ltd.
Resumo:
Wheat straw was treated with microwave for 4 min and 8 min at a power of 750 W and frequency of 2,450 MHz. Chemical compositions of untreated, 4 min treated and 8 min treated Straws were analyzed and in sacco degradabilities of all these straws in yak rumens were measured. Microwave treatment didn't significantly (p > 0.05) affect the chemical composition of the straw. In sacco dry matter (DM) degradability of the straw after 18 h incubation in rumen was significantly (p < 0.01) improved by microwave treatment. In sacco crude protein (CP) degradability of the straw was not (p > 0.05) affected by microwave treatment. In sacco organic matter (OM) degradability of the straw was increased (p < 0.01) by around 20% for both the 4 min and 8 min microwave treatment, that of acid detergent fibre (ADF) was increased (p < 0.01) by 61.6% and 62.8%, and that of ash free ADF was enhanced by 72.1% and 69.6% for the 4 min and 8 min microwave treatment respectively. No significant difference was observed between the 4 min and 8 min microwave treatment on the degradability of DM, OM, CP, ADF and ash-free ADF of the straw.
Resumo:
Microwave effects have been shown to promote the activation of NOx molecules in the process of selective reduction of NO by CH4 over an In-Fe2O3/HZSM-5 catalyst and to enhance the water tolerance of this catalyst for NO reduction.
Resumo:
Removal of NO by a continuous microwave discharge at atmospheric pressure with the addition of CH4 is reported. The conversion of NO to N-2 is approximately 80%, and the energy efficiency is up to 0.55 g-NO/kWh. The effects of CH4 addition and three discharge modes on NO conversion and energy efficiency are investigated. The dependence of NO conversion on experimental time is also observed.
Resumo:
NaA zeolite membrane was successfully synthesized on the porous alpha-Al2O3 support by microwave heating. The synthesis of NaA zeolite membrane in the microwave field only needs 15 min and the synthesis time is 10 times shorter than that by conventional heating. SEM characterization indicates that the zeolite crystals in the NaA zeolite membrane synthesized by microwave heating are uniform in size; the membrane thickness is about 4 mu m and is thinner than that of the NaA zeolite membrane synthesized by conventional heating. Gas permeation studies indicate that the permeances of the NaA zeolite membrane synthesized by microwave heating are 3-4 times higher than those of the NaA zeolite membrane synthesized by conventional heating, while their permselectivities are comparable.
Resumo:
Zeolite membranes with high permeance and separation factors are highly desirable for practical applications. Although, in the past, very good separation factors have been obtained, it has proved difficult to achieve a high permeance. Ken a comparative study of microwave versus conventional heating in the hydrothermal synthesis of NaA zeolite membranes is made. It is demonstrated that membranes prepared by microwave heating have not only a higher permeance but also a considerably shorter synthesis time. These observations are rationalized by examining the mechanism of membrane formation.