130 resultados para linewidth-narrowed
Resumo:
In this report we have investigated the temperature dependence of photoluminescence (PL) from self-assembled InAs quantum dots (QDs) covered by an InAlAs/InGaAs combination layer. The ground state experiences an abnormal variation of PL linewidth from 15 K up to room temperature. Meanwhile, the PL integrated intensity ratio of the first excited state to the ground state for InAs QDs unexpectedly decreases with increasing temperature, which we attribute to the phonon bottleneck effect. We believe that these experimental results are closely related to the partially coupled quantum dots system and the large energy separation between the ground and the first excited states. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
We report the morphology of an InGaAs nanostructure grown by molecular beam epitaxy via cycled (InAs)(n)/(GaAs)(n) monolayer deposition. Atomic force microscopy images clearly show that varying monolayer deposition per cycle has significant influence on the size, density and shape of the InGaAs nanostructure. Low-temperature photoluminescence spectra show the effect of n on the optical quality, and 1.35mum photoluminescence with a linewidth of only 19.2meV at room temperature has been achieved in the (InAs)(1)/(GaAs)(1) structure.
Resumo:
A glass spherical microcavity only a few microns in diameter embedded with CdSexS1-x quantum dots (QDs) was fabricated using a physical method; it exhibited good optical stability under continuous-wave laser excitation with high power. We investigated the excitation power dependences of the emission intensity and the linewidth of both transverse electric and transverse magnetic resonance peaks of whispering gallery modes. Stimulated emission behaviour of multi-frequency modes is observed at room temperature. The low threshold value and large mode separation makes QD-containing microspheres promising for visible microlaser applications.
Resumo:
We have investigated the effect of InAlAs/InGaAs cap layer on the optical properties of self-assembled InAs/GaAs quantum dots (QDs). We find that the photoluminescence emission energy, linewidth and the energy separation between the ground and first excited states of InAs QDs depend on the In composition and the thickness of thin InAlAs cap layer. Furthermore, the large energy separation of 103 meV was obtained from InAs/GaAs QDs with emission at 1.35 pm at room temperature. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The surfactant effect of isoelectronic indium doping during metalorganic chemical vapor deposition growth of cubic GaN on GaAs (1 0 0) substrates was studied. Its influence on the optical properties and surface morphology was investigated by using room-temperature photoluminescence (PL) and atomic force microscopy. It is shown that the sample with small amount of In-doping has a narrower PL linewidth, and a smoother surface than undoped cubic GaN layers. A slight red shift of the near-band-edge emission peak was observed. These results revealed that, for small TMIn flow rates, indium played the role of the surfactant doping and effectively improved the cubic GaN film quality; for large TMIn flow rates, the alloying formation of Ga1-xInxN might have occurred. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The temperature-dependent photoluminescence (PL) properties of InAs/GaAs self-organized quantum dots (QDs) have been investigated at high excitation power. The fast redshift of the ground-state and the first excited-state PL energy with increasing temperature was observed. The temperature-dependent linewidth of the QD ground state with high carrier density is different from that with low carrier density. Furthermore, we observed an increasing PL intensity of the first excited state of QDs with respect to that of the ground state and demonstrate a local equilibrium distribution of carriers between the ground state and the first excited state for the QD ensemble at high temperature (T > 80 K). These results provide evidence for the slowdown of carrier relaxation from the first excited state to the ground state in InAs/GaAs quantum dots.
Resumo:
Red shifts of emission wavelength of self-organized In(Cla)As/GaAs quantum dots (QDs) covered by 3 nm thick InxGa1-xAs layer with three different In mole fractions (x = 0.1, 0.2 and 0.3, respectively) have been observed. Transmission electron microscopy images demonstrate that the stress along growth direction in the InAs dots was reduced due to introducing the InxGa1-xAs (x = 0.1, 0.2 and 0.3) covering layer instead of GaAs layer. Atomic force microscopy pictures show a smoother surface of InAs islands covered by an In0.2Ga0.8As layer. It is explained by the calculations that the redshifts of the photoluminescence (PL) spectra from the QDs covered by the InxGa1-xAs (x greater than or equal to 0.1) layers were mainly due to the reducing of the strain other than the InAs/GaAs intermixing in the InAs QDs. The temperature dependent PL spectra further confirm that the InGaAs covering layer can effectively suppress the temperature sensitivity of PL emissions. 1.3 mum emission wavelength with a very narrow linewidth of 19.2 mcV at room temperature has been obtained successfully from In,In0.5Ga0.5As/GaAs self-assembled QDs covered by a 3-nm In0.2Ga0.2As strain reducing layer. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Photoluminescence from a GaN0.015As0.985/GaAs quantum well has been measured at 15 K under hydrostatic pressure up to 9 GPa. Both the emissions from the GaNAs well and GaAs barrier are observed. The GaNAs-related peak shows a much weaker pressure dependence compared to that of the GaAs band gap. A group of new peaks appear in the spectra when the pressure is beyond 2.5 GPa, which is attributed to the emissions from the N isoelectronic traps in GaAs. The pressure dependence of the GaNAs-related peaks was calculated using the two-level model with the measured pressure coefficients of the GaAs band gap and N level as fitting parameters. It is found that the calculated results deviate seriously from the experimental data. An increasing of the emission intensity and the linewidth of the GaNAs-related peaks was also observed and briefly discussed. (C) 2001 American Institute of Physics.
Resumo:
Optical properties of InGaAs/GaAs self-organized quantum dots (QDs) structures covered by InxGa1-x As capping layers with different In contents chi ranging from 0. 0 (i.e., GaAs) to 0. 3 were investigated systematically by photoluminescence (PL) measurements. Red-shift of the PL peak energies of the InAs QDs covered by InxGa1-xAs layers with narrower linewidth and less shifts of the PL emissions via variations of the measurement temperatures were observed compared with that covered by GaAs layers. Calculation and structural measurements confirm that the red-shift of the PL peaks are mainly due to strain reduction and suppression of the In/Ga intermixing due to the InxGa1-xAs cover layer, leading to better size uniformity and thus narrowing the PL linewidth of the QDs. 1. 3 mum wavelength emission with very narrow linewidth of only 19. 2 meV at room temperature was successfully obtained from the In0.5Ga0.5As/GaAs QDs covered by the In0.2Ga0.8As layer.
Photoluminescence studies of type-II self-assembled InAlAs/AlGaAs QDs grown on (311)A GaAs substrate
Resumo:
The photoluminescence (PL) spectra of self-assembled In0.55Al0.45As/Al0.45Ga0.5As quantum dots (QD) grown on (311)A GaAs substrate were measured. The type- I character of PL related to the X valley was verified by excitation power dependence of peak position and the PL spectra under different pressure , which was attributed to the type- II transition from X valley in Al0.5Ga0.5As to heavy holes in In0.55Al0.45As The high energy Gamma -related transition was also observed above 70K and assigned as the transition between Gamma valley and heavy holes in In-0.55 Al0.45As. The X-valley split was discussed to interpret the observed second X-related peak under pressure.
Resumo:
We have studied the effects of postgrowth rapid thermal annealing on the optical properties of 3-nm-height InAs/GaAs quantum dots covered by 3-nm-thick InxGa1-xAs (x = 0, 0.1, and 0.2) overgrowth layer. At higher annealing temperature (T greater than or equal to 750 degreesC), the photoluminescence peak of InGaAs layer has been observed at lower-energy side of the InAs quantum-dot peak. In addition, the blueshift in photoluminescence (PL) emission energy is found to he similar for all samples with increasing the annealing temperature from 650 to 850 degreesC. However, the trend of narrowing of photoluminescence linewidth is significantly different for InAs quantum dots with different In mole fractions in InGaAs overgrowth layer. These results suggest that the intermixing in the lateral direction plays an important role in helping to understand the modification of optical properties induced by rapid thermal annealing. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
1.35 mum photoluminescence (PL) with a narrow linewidth of only 19.2 meV at room temperature has been achieved in In0.5Ga0.5As islands structure grown on GaAs (1 0 0) substrate by solid-source molecular beam epitaxy. Atomic force microscopy (AFM) measurement reveals that the 16-ML-thick In0.5Ga0.5As islands show quite uniform InGaAs mounds morphology along the [ 1(1) over bar 0] direction with a periodicity of about 90 nm in the [1 1 0] direction. Compared with the In0.5Ga0.5As alloy quantum well (QW) of the same width, the In0.5Ga0.5As islands structure always shows a lower PL peak energy and narrower full-width at half-maximum (FWHM), also a stronger PL intensity at low excitation power and more efficient confinement of the carriers. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
InAs self-assembled quantum dots(QDs) covered by 3-nm-thick InxGa1-xAs(0 less than or equal tox less than or equal to0.3) capping layer have been grown on GaAs(100) substrate. Transmission electron microscopy shows that InGaAs layer reduces the strain in the InAs islands,and atomic force microscopy evidences the deposition of InGaAs on the top of InAs islands when x = 0.3.The significant redshift of the photoluminescence (PL) peak energy and the reduction of PL linewidth of InAs quantum dots covered by InGaAs are observed. In addition,InGaAs overgrowth layer suppresses the temperature sensitivity of PL peak energy. Based on our analysis, the strain-reduction and the size distribution of the InAs QDs are the main cause of the redshift and temperature insensitivity of the PL respectively.
Resumo:
InAs quantum dots (QDs) grown on GaAs surface are investigated. The observed abnormal photoluminescence (PL) properties, including extremely sharp high-energy peaks, almost temperature-independent linewidth, and fast thermal quenching, are discussed in terms of the strong quantum confinement effects due to the absence of a cap layer and the lack of carrier redistribution channel caused by the small number of QDs capable of contributing to PL and the high-density surface defects. (C) 2000 American Institute of Physics. [S0003-6951(00)01244-4].
Resumo:
InAs self-organized quantum dots (QDs) grown on annealed low-temperature GaAs (LT-GaAs) epi-layers and on normal temperature GaAs buffer layers have been compared by transmission electron microscopy (TEM) and photoluminescence (PL) measurements. TEM evidences that self-organized QDs were formed with a smaller size and larger density than that on normal GaAs buffer layers. It is discussed that local tensile surface strain regions that are preferred sites for InAs islands nucleation are increased in the case of the LT-GaAs buffer layers due to exhibiting As precipitates. The PL spectra show a blue-shifted peak energy with narrower linewidth revealing the improvement of optical properties of the QDs grown on LT-GaAs epi-layers. It suggests us a new way to improve the uniformity and change the energy band structure of the InAs self-organized QDs by carefully controlling the surface stress states of the LT-GaAs buffers on which the QDs are formed. (C) 2000 Elsevier Science B.V. All rights reserved.