160 resultados para centrifugal distortion
Resumo:
A new polyvinylalcohol-based photopolymeric holographic recording material has been developed. The recording is obtained by the copolymerization of acrylamide and N-hydroxymethyl acrylamide. Diffraction efficiencies near 50% are obtained with energetic exposure of 80mJ/cm(2). N-hydroxymethyl acrylamide can improve the optical quality of the film. With the increase of the concentration of N-hydroxymethyl acrylamide, the flatness of the film increases, scattering reduces and the straight image is clearer with a small distortion. The postexposure effect on the grating is also studied. The diffraction efficiency of grating increases further during postexposure, gradient of monomer exists after exposure.
Resumo:
The real and imaginary parts of third-order susceptibility of amorphous GeSe2 film were measured by the method of the femtosecond optical heterodyne detection of optical Kerr effect at 805 nm with the 80 fs ultra fast pulses. The results indicated that the values of real and imaginary parts were 8.8 x 10(-12) esu and -3.0 x 10(-12) esu, respectively. An amorphous GeSe2 film also showed a very fast response within 200 fs. The ultra fast response and large third-order non-linearity are attributed to the ultra fast distortion of the electron orbits surrounding the average positions of the nucleus of Ge and Se atoms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The results of the femtosecond optical heterodyne detection of optical Kerr effect at 805 am with the 80 fs ultrafast pulses in amorphous Ge10As40S30Se20 film is reported in this Letter. The film shows an optical nonlinear response of 200 fs under ultrafast 80 fs-pulse excitation, and the values of real and imaginary parts of nonlinear susceptibility chi((3)) were 9.0 x 10(-12) esu and -4.0 x 10(-12) esu respectively. The large third-order nonlinearity and ultrafast response are attributed to the ultrafast distortion of the electron orbits surrounding the average positions of the nucleus of Ge, As, S and Se atoms. This Ge10As40S30Se20 chalcogenide glass would be expected as a promising material for optical switching technique.
Resumo:
A new humidity-resistant highly sensitive acrylamide-based photopolymeric holographic recording material has been developed. The photopolymer is resistant to the humidity of environment. Diffraction efficiencies near 50% are obtained with exposure energy of 60 mJ/cm(2) in materials of 150 mu m. thickness. Diphenyl iodonium chloride is added to the material and can increase the exposure sensitivity by a factor of more than 4 (to about 28 mJ/cm(2)). An image has been successfully stored in the material with a small distortion. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
高重复频率热容主振荡功率放大器(MOPA)激光系统的工作过程一般只持续几秒至几十秒,在此过程中系统输出光束的波前畸变是动态变化的。采用环路径向剪切干涉(CRWSI)技术对高重复频率热容MOPA系统波前畸变的变化过程进行检测,并对系统的总体结构进行了设计。搭建了一个简化的实验系统,采用平凹透镜来代替光放大器产生波前畸变,并由此对环路径向剪切干涉仪的测量精度进行了验证。结果表明,实验测量结果与理论计算值之间的峰值误差为7.8%(0.02λ)。
Resumo:
开展了激光二极管(LD)抽运的全固态热容激光器的理论与实验研究, 数值模拟了在热容工作条件下侧面抽运的Nd:YAG板条激光器的热透镜效应, 分析了热透镜效应对激光输出的影响, 并进行了相应的实验论证。实验中采用的晶体尺寸为57 mm×40 mm×4 mm, 激光二极管阵列的抽运峰值功率为12 kW, 重复频率为1 kHz, 占空比为20%, 为了获得较高的增益, 将抽运光通过光学系统进行聚焦, 抽运光在晶体侧面的光斑大小为15 mm×57 mm。实验中观察了1 s内的脉冲能量输出的波动情况, 在开始工作的
Resumo:
A novel double-slab Nd:YAG laser, which uses face-pumped slab medium cooled by liquid with different temperatures on both sides, is proposed. The thermal distortion of wavefront caused by the non-uniform temperature distribution in the laser gain media can be self-compensated. According to the method of operation, the models of the temperature distribution and stress are presented, and the analytic solutions for the model are derived. Furthermore, the numerical simulations with pulse pumping energy of 10 J and repetition frequencies of 500 and 1000 Hz are calculated respectively for Nd:YAG laser medium. The simulation results show that the temperature gradient remains the approximative linearity, and the heat stress is within the extreme range. Then the absorption coefficient is also discussed. The result indicates that the doping concentration cannot be too large for the high repetition frequency laser. It has been proved that the high repetition frequency, high laser beam quality, and high average output power of the order of kilowatt of Nd: YAG slab laser can be achieved in this structure.
Resumo:
报道了一种新型双板条离轴混合腔激光器。这种激光器结构通过改变传统的冷却方式和采用特殊的谐振腔设计,将使从第一块介质板条高温一侧出射的激光对称地进入另一块板条的低温一侧,从而可对由于温度分布不均匀造成的波面畸变进行一定程度的自校正,减少热效应的影响,可望提高激光器的输出功率和光束质量。利用快速傅里叶变换(FFT)对这种激光器的近场、远场以及相位等模场特性进行了数值计算。分析了波面畸变对输出光束质量的影响,并与常规双板条激光器进行了比较,结果表明这种新型双板条离轴混合腔激光器可以实现一定程度的波面畸变自补偿,
Resumo:
Fluorophosphate glasses with different contents of ErF3 were prepared. Due to the radiation trapping of Er, concentration dependence of the fluorescence lifetime is subject to distortion, and the stimulated-emission cross section calculated by the Fuchtbauer-Ladenburg equation is underestimated. The influence of radiation trapping on the measured fluorescence lifetime and width are investigated quantitatively. By comparing the intensity ratio of the 1556-1532 nm peak in the fluorescence spectrum with that in the stimulated-emission cross-section spectrum obtained according to the McCumber theory, the distortion ratio of fluorescence spectrum due to radiation trapping is obtained. An empirical way to quantitatively evaluate the influences of radiation trapping on fluorescence lifetime and width is proposed. (c) 2007 Optical Society of America.
Resumo:
Variations of peak position of the rocking curve in the Bragg case are measured from a Ge thin crystal near the K-absorption edge. The variations are caused by a phase change of the real part of the atomic scattering factor. Based on the measurement, the values of the real part are determined with an accuracy of better than 1%. The values are the most reliable ones among those reported values so far as they are directly determined from the normal atomic scattering factors.
Resumo:
A new optimized structure of an UTC (uni-traveling-carrier) photodiode is developed and epitaxied by metal-organic chemical vapor deposition. We fabricated a UTC photodiode of 30 mu m in diameter. Theoretical simulation based on drift-diffusion model was used to analyze the space-charge-screening effect in UTC photodiode primarily in two aspects: the carrier concentrations and the space electric field. The simulation results were generally in agreement with the experimental data.
Resumo:
We present different relaxation mechanisms of Ge and SiGe quantum dots under excimer laser annealing. Investigation of the coarsening and relaxation of the dots shows that the strain in Ge dots on Ge films is relaxed by dislocation since there is no interface between the Ge dots and the Ge layer, while the SiGe dots on Si0.77Ge0.23 film relax by lattice distortion to coherent clots, which results from the obvious interface between the SiGe clots and the Si0.77Ge0.23 film. The results are suggested and sustained by Vanderbilt and Wickham's theory, and also demonstrate that no bulk diffusion oGeurs during the excimer laser annealing.
Resumo:
The atomic and electronic structures of saturated and unsaturated GaN nanotubes along the [001] direction with (100) lateral facets are studied using first-principles calculations. Atomic relaxation of nanotubes shows that appreciable distortion occurs in the unsaturated nanotubes. All the nanotubes considered, including saturated and unsaturated ones, exhibit semiconducting, with a direct band gap Surface states arisen from the 3-fold-coordinated N and Ga atoms at the lateral facets exist inside the bulklike band gap. When the nanotubes are saturated with hydrogen, these dangling bond bands are removed from the band gap, but the band gap decreases with increasing the wall thickness of the nanotubes.
Resumo:
A ZnO layer was grown by metalorganic chemical vapor deposition (MOCVD) on a sapphire (0 0 0 1) substrate. The perpendicular and parallel elastic strain of the ZnO epilayer, e(perpendicular to) = 0.19%, e(parallel to) = -0.29%, respectively, were derived by using the combination of Rutherford backscattering (RBS)/channeling and X-ray diffraction (XRD). The ratio vertical bar e(parallel to)/ e(perpendicular to)vertical bar = 1.5 indicates that ZnO layer is much stiffer in the a-axis direction than in the c-axis direction. By using RBS/C, the depth dependent elastic strain was deduced. The strain is higher at the depth close to the interface and decreases towards the surface. The negative tetragonal distortion was explained by considering the lattice mismatch and thermal mismatch in ZnO thin film. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The depth distribution of the strain-related tetragonal distortion e(T) in the GaN epilayer with low-temperature AlN interlayer (LT-AlN IL) on Si(111) substrate is investigated by Rutherford backscattering and channeling. The samples with the LT-AlN IL of 8 and 16 nm thickness are studied, which are also compared with the sample without the LT-AlN IL. For the sample with 16-nm-thick LT-AlN IL, it is found that there exists a step-down of e(T) of about 0.1% in the strain distribution. Meanwhile, the angular scan around the normal GaN <0001> axis shows a tilt difference about 0.01degrees between the two parts of GaN separated by the LT-AlN IL, which means that these two GaN layers are partially decoupled by the AlN interlayer. However, for the sample with 8-nm-thick LT-AlN IL, neither step-down of e(T) nor the decoupling phenomenon is found. The 0.01degrees decoupled angle in the sample with 16-nm-thick LT-AlN IL confirms the relaxation of the LT-AlN IL. Thus the step-down of e(T) should result from the compressive strain compensation brought by the relaxed AlN interlayer. It is concluded that the strain compensation effect will occur only when the thickness of the LT-AlN IL is beyond a critical thickness. (C) 2004 American Institute of Physics.