214 resultados para amniotic band syndrome
Resumo:
The alloy formation enthalpy and band structure of InGaN nanowires were studied by a combined approach of the valence-force field model, Monte Carlo simulation, and density-functional theory (DFT). For both random and ground-state structures of the coherent InGaN alloy, the nanowire configuration was found to be more favorable for the strain relaxation than the bulk alloy. We proposed an analytical formula for computing the band gap of any InGaN nanowires based on the results from the screened exchange hybrid DFT calculations, which in turn reveals a better band-gap tunability in ternary InGaN nanowires than the bulk alloy.
Resumo:
The valence band offset (VBO) of InN/4H-SiC heterojunction has been directly measured by x-ray photoelectron spectroscopy. The VBO is determined to be 0.55 +/- 0.23 eV and the conduction band offset is deduced to be -2.01 +/- 0.23 eV, indicating that the heterojunction has a type-I band alignment. The accurate determination of the valence and conduction band offsets is important for applications of InN/SiC optoelectronic devices.
Resumo:
We demonstrate theoretically that electric field can drive a quantum phase transition between band insulator to topological insulator in CdTe/HgCdTe/CdTe quantum wells. The numerical results suggest that the electric field could be used as a switch to turn on or off the topological insulator phase, and temperature can affect significantly the phase diagram for different gate voltage and compositions. Our theoretical results provide us an efficient way to manipulate the quantum phase of HgTe quantum wells.
Resumo:
We demonstrate the self-organized InAs quantum dots capped with thin and In0.2Al0.8As and In0.2Ga0.8As combination layers with a large ground and first excited energy separation emission at 1.35 mum at room temperature. Deep level transient spectroscopy is used to obtain quantitative information on emission activation energies and capture barriers for electrons and holes. For this system, the emission activation energies are larger than those for InAs/GaAs quantum dots. With the properties of wide energy separation and deep emission activation energies, self-organized InAs quantum dots capped with In0.2Al0.8As and In0.2Ga0.8As combination layers are one of the promising epitaxial structures of 1.3 mum quantum dot devices. (C) 2004 American Institute of Physics.
Resumo:
A polarization-insensitive semiconductor optical amplifier (SOA) with a very thin active tensile-strained InGaAs bulk has been fabricated. The polarization sensitivity of the amplifier gain is less than 1 dB over both the entire range of driving current and the 3 dB optical bandwidth of more than 80 nm. For optical signals of 1550 nm wavelength, the SOA exhibits a high saturation output power +7.6 dBm together with a low noise figure of 7.5 dB, fibre-to-fibre gain of 11.5 dB, and low polarization sensitivity of 0.5 dB. Additionally, at the gain peak 1520 nm, the fibre-to-fibre gain is measured to be 14.1 dB.
Resumo:
In this paper we present a novel growth of grade-strained bulk InGaAs/InP by linearly changing group-III TMGa source flow during low-pressure metalorganic vapor-phase epitaxy (LP-MOVPE). The high-resolution X-ray diffraction (HRXRD) measurements showed that much different strain was simultaneously introduced into the fabricated bulk InGaAs/InP by utilizing this novel growth method. We experimentally demonstrated the utility and simplicity of the growth method by fabricating common laser diodes. As a first step, under the injection current of 100 mA, a more flat gain curve which has a spectral full-width at half-maximum (FWHM) of about 120 nm was achieved by using the presented growth technique. Our experimental results show that the simple and new growth method is very suitable for fabricating broad-band semiconductor optoelectronic devices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The square lattice with square air holes and the triangular lattice with circular air holes are both studied. Calculated results show that the change of lattice size in some special ranges can enlarge the band gap, which depends strongly on the filling factor of air holes in photonic crystals; and besides, the asymmetric band edges will appear with the broken symmetry of lattices.
Resumo:
This work investigated analytically the band structure of photonic crystals (PCs) with alternate layers of left and right-handed materials in one-dimension. It was found that, under certain conditions, new peculiar band structures not seen in all right-handed material PCs appeared. We transformed the analytic dispersion relation into two cosine terms, and obtained an interesting band structure using the new form of dispersion equation. Conditions for obtaining such peculiar band structure were given. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In the optical network, the quick and accurate alignment with wavelength is an important issue during the channel detection. At this point, a filter having flat-top response characteristic is an effective solution. Based on multiple-step-type Fabry-Perot cavity structure, a novel all-Si-based thermooptical tunable flat-top filter with narrow-band has been fabricated, using our patent silicon-on-reflector bonding technology. The device demonstrated a 1-dB flat-top width of 1 nm, 3-dB band of 3 nm, free spectra range of 8 nm, and the tuning range of 4.6 nm was obtained under the applied voltage of 4 V.
Resumo:
A numerical study of the defect modes in two-dimensional photonic crystals with deformed triangular lattice is presented by using the supercell method and the finite-difference time-domain method. We find the stretch or shrink of the lattice can bring the change not only on the frequencies of the defect modes but also on their magnetic field distributions. We obtain the separation of the doubly degenerate dipole modes with the change of the lattice and find that both the stretch and the shrink of the lattice can make the dipole modes separate large enough to realize the single-mode emission. These results may be advantageous to the manufacture of photonic crystal lasers and provide a new way to realize the single-mode operation in photonic crystal lasers.
Resumo:
The photoluminescence of a GaAsN alloy with 0.1% nitrogen has been studied under pressures up to 8.5 GPa at 33, 70, and 130 K. At ambient pressure, emissions from both the GaAsN alloy conduction band edge and discrete nitrogen-related bound states are observed. Under applied pressure, these two types of emissions shift with rather different pressure coefficients: about 40 meV/GPa for the nitrogen-related features, and about 80 meV/GPa for the alloy band-edge emission. Beyond 1 GPa, these discrete nitrogen-related peaks broaden and evolve into a broad band. Three new photoluminescence bands emerge on the high-energy side of the broad band, when the pressure is above 2.5, 4.5, and 5.25 GPa, respectively, at 33 K. In view of their relative energy positions and pressure behavior, we have attributed these new emissions to the nitrogen-pair states NN3 and NN4, and the isolated nitrogen state N-x. In addition, we have attributed the high-energy component of the broad band formed above 1 GPa to resonant or near-resonant NN1 and NN2, and its main body to deeper cluster centers involving more than two nitrogen atoms. This study reveals the persistence of all the paired and isolated nitrogen-related impurity states, previously observed only in the dilute doping limit, into a rather high doping level. Additionally, we find that the responses of different N-related states to varying N-doping levels differ significantly and in a nontrivial manner.
Resumo:
This paper presents a comprehensive study of the effect of heavy B doping and strain in Si1-xGex strained layers. On the one hand, bandgap narrowing (BGN) will be generated due to the heavy doping, on the other hand, the dopant boron causes shrinkage in the lattice constant of SiGe materials, thus will compensate for part of the strain. Taking the strain compensation of B into account for the first time and uesing the with semi-empirical method, the Jain-Roulston model is modified. And the real BGN distributed between the conduction and valence bands is calculated, which is important for the accurate design of SiGe HBTs.
Resumo:
The valence band offset (VBO) of the wurtzite InN/ZnO heterojunction is directly determined by x-ray photoelectron spectroscopy to be 0.82 +/- 0.23 eV. The conduction band offset is deduced from the known VBO value to be 1.85 -/+ 0.23 eV, which indicates a type-I band alignment for InN/ZnO heterojunction. (C) 2007 American Institute of Physics.
Resumo:
The modulation of superlattice band structure via periodic delta-doping in both well and barrier layers have been theoretically investigated, and the importance of interaction between the delta-function potentials in the well layers and those in the barrier layers on SL band structure have been revealed. It is pointed out that the energy dispersion relation Eq. (3) given in [G. Ihm, S.K. Noh, J.I. Lee, J.-S. Hwang, T.W. Kim, Phys. Rev. B 44 (1991) 6266] is an incomplete one, as the interaction between periodic delta-doping in both well and barrier layers had been overlooked. Finally, we have shown numerically that the electron states of a GaAs/Ga0.7Al0.3As superlattice can be altered more efficiently by intelligent tuning the two delta-doping's positions and heights. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A two-dimensional (2D) photonic crystal waveguide in the Gamma-K direction with triangular lattice on a silicon-on insulator (SOI) substrate in the near-infrared band is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. Its transmission characteristics are analysed from the stimulated band diagram by the effective index and the 2D plane wave expansion (PWE) methods. In the experiment, the transmission band edge in a longer wavelength of the photonic crystal waveguide is about 1590 nm, which is in good qualitative agreement with the simulated value. However, there is a disagreement between the experimental and the simulated results when the wavelength ranges from 1607 to 1630 nm, which can be considered as due to the unpolarized source used in the transmission measurement.