181 resultados para Written composition
Resumo:
The transfer matrix method combined with the effective index method is adopted to model the silica-based channel waveguide patterned by UV writing. The effective indexes of the graded index channel waveguides with different dimension are calculated. The maximal error of the effective index is less than 3 x 10(-5). By this method, the number of the guided mode and the dimension range to guide certain modes can be obtained easily. Finally, the dimension range to guide a single mode is presented. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The structural and optical properties of GaAsSb/GaAs quantum wells (QWs) and strain-compensated GaAsP/GaAs/GaAsSb/GaAs/GaAsP QWs grown on a GaAs substrate by molecular beam epitaxy are investigated using high-resolution x-ray diffraction and photoluminescence (PL) measurements. We demonstrated that the insertion of tensile GaAsP layers into the active region of GaAsSb/GaAs QWs effectively improves the structural and optical quality. Even the Sb composition is as high as 0.39. The PL spectra at 11 K and room temperature indicate that the PL peak of strain-compensated QWs has a narrower linewidth and higher intensity in comparison to the sample without strain compensation. The results of PL peak blueshift with increasing excitation show the strain-compensated GaAsSb/GaAs interface characteristic of type-I band alignment. (C) 2003 American Institute of Physics.
Resumo:
GaN1-xPx ternary alloys with high P compositions were deposited on sapphire substrates by means of metal-organic chemical vapor deposition. Depth profiles of the elements indicate that the maximum P/N composition ratio is about 17% and a uniform distribution of the P atoms in the alloys is achieved. 2theta/omega XRD spectra demonstrate that the (0002) peak of the GaN1-xPx alloys shifts to smaller angle with increasing P composition. From the photoluminescence (PL) spectra, the red shifts to the bandedge emission of GaN are determined to be 73, 78, 100 and 87 meV for the GaN1-xPx alloys with the P/N composition ratios of 3%, 11%, 15% and 17%, respectively. No PL peak related to GaP is observed, indicating that the phase separation between GaN and GaP is well suppressed in our GaN1-xPx samples. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
InxGa1-xAs self-organized quantum dots with x=1.0, 0.5, and 0.35 have been grown by molecular beam epitaxy. The areal density, distribution, and shapes have been found to be dependent on x. The dot shape changes from a round shape for x=1.0 to an elliptical shape for x less than or equal to 0.5. The major axis and minor axis of the elliptical InxGa1-xAs dots are along the [(1) over bar 10] and [110] directions, respectively. The ordering phenomenon is also discussed. It is suggested that the dot-dot interaction may play important roles in the self-organization process. (C) 2000 American Institute of Physics. [S0021-8979(00)10701-7].
Resumo:
The deposition of InxGa1-xAs (0.2 less than or equal to x less than or equal to 0.5) on (311)B GaAs surfaces using solid source molecular beam epitaxy (MBE) has been studied. Both AFM and photoluminescence emission showed that homogeneous quantum dots could be formed on (311)B GaAs surface when indium composition was around 0.4. Indium composition had a strong influence on the size uniformity and the lateral alignment of quantum dots. Compared with other surface orientation, (100) and (n11) A/B (n=1,2,3), photoluminescence measurement confirmed that (311)B surface is the most advantageous in fabricating uniform and dense quantum dots.
In composition dependence of lateral ordering in InGaAs quantum dots grown on (311)B GaAs substrates
Resumo:
Self-assembled InxGa1-xAs quantum dots (QDs) on (311)A/B GaAs surfaces have been grown by molecular beam epitaxy (MBE). Spontaneously ordering alignment of InxGa1-xAs with lower In content around 0.3 have been observed. The direction of alignment orientation of the QDs formation differs from the direction of misorientation of the (311)B surface, and is strongly dependent upon the In content x. The ordering alignment become significantly deteriorated as the In content is increased to above 0.5 or as the QDs are formed on (100) or (311)A substrates. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The effective index method (EIM) was adopted to model the channel waveguide patterned by the UV in photosensitive silica film. The effective indexes of the different dimension symmetrical and asymmetrical channel waveguides were calculated, and the resource of the error of the method was pointed out. At last, the dimension rang to propagate single mode was presented.
Resumo:
低损耗高强度碲酸盐玻璃光纤用光学材料的优化方案