438 resultados para Vila do Céu do Mapiá - Pauini (AC)
Resumo:
通过测定植物的丙二醛(MDA)含量、酸溶性SH含量以及两种抗氧化酶(超氧化物歧化酶SOD和愈创木酚过氧化物酶GPX)的酶活,研究了重金属镉(Cd)和铜(Cu)对美人蕉(Cannaindica Linn.)的氧化胁迫。结果表明,20μmol·L~(-1)和100μmol·L~(-1)的Cd~(2+)和Cu~(2+)均使其根部MDA含量显著增加,但除了100μmol·L~(-1)的Cd~(2+),叶部MDA含量无明显变化。与Cu~(2+)相比,Cd~(2+)能引起植物根部GSH的明显提高,并能诱导PCs的产生
Resumo:
目的克隆猪囊尾蚴胞质含铜/锌的超氧化物歧化酶基因(Cu/ZnSOD),并比较其与其它寄生蠕虫相应基因结构的相似性。方法通过获取其它生物Cu/ZnSOD基因的保守区域,设计保守引物,用于扩增该寄生虫的Cu/ZnSOD基因。结果Cu/ZnSOD基因编码一15.6kDa的蛋白,该蛋白的推导序列中含有这类酶的活性和二级结构所需要的所有保守的氨基酸残基,并且与其它寄生虫的相应序列有高达70.6%的相似度。抑制剂研究试验表明所克隆的SOD属于Cu/ZnSOD,该蛋白在大肠杆菌中得以成功表达,表达产物具有SOD活性。免
Resumo:
研究了不同浓度的Cu2+(0.01,0.1,1,10,50,100,200mg/L)对绿球藻(Chlorococcumsp.)生长、形态结构及生理特性的影响.结果表明,Cu2+对绿球藻的显微结构、生长及生理状态的影响比较显著.与对照BG11培养的绿球藻比较,0.01~1mg/LCu2+浓度下培养的绿球藻,细胞壁无明显增厚,色素没有多大变化,但蛋白核由一个变为多个;而在高浓度(10~200mg/LCu2+)下,细胞壁明显增厚为多层,色素减少,蛋白核减少并回复到1个或消失.低浓度Cu2+(0.01,0.1mg
Resumo:
利用微量热法研究Cd2 + 和Cu2 + 对嗜热四膜虫BF5(TetrahymenathermophilaBF5)生长代谢毒性效应 ,结果表明 :①低浓度的Cd2 + (0~ 0 .4mgL-1)和Cu2 + (0~ 10mgL-1)对四膜虫的生长有促进作用 ,而高浓度的Cd2 + (0 .8~ 3.2mgL-1)和Cu2 + (2 0~ 2 0 0mgL-1)则产生抑制作用 ;②Cd2 + 和Cu2 + 的半抑制浓度IC50 分别为 2 .0 4mg/L和15 5 .5mg/L ;③联合毒性为协同作用
Resumo:
通过人为改变湖水中的Cu2 + 浓度和含盐量的方法 ,Cu2 + 浓度和含盐量变化对Kinneret湖水中浮游植物可能造成的影响进行了分析。结果表明 ,湖水Cu2 + 浓度增加会抑制Kinneret湖水中藻类等浮游植物的生长 ,这对改善湖水水质来说是非常有利的 ,但高的Cu2 + 浓度对农作物生长和人类健康是有害的。在另一方面 ,对含盐量较低的约旦河水来说 ,适当增加Cu2 + 浓度则有利于藻类的生长。Kinneret湖中浮游植物的年平均生物量随湖水含盐量的下降而有增加的趋势 ,特别是当含盐量低于 2 0
Resumo:
以稀有鲫为材料 ,研究了应激蛋白质作为生物学指标的敏感性。结果表明 ,在无可观察效应浓度下 ,经 5d亚慢性胁迫暴露 ,以Cu2 +为胁迫因子 ,稀有鲫被诱导出约 54KDa的应激蛋白质 ;以Zn2 +为胁迫因子 ,稀有鲫被诱导出约 94KDa ,67KDa和 40KDa的应激蛋白质。应激蛋白质有可能成为一种生物学指标运用于生态风险性早期预警。
Resumo:
用Cu2+对红豆杉(Taxuschinensis)培养细胞中紫杉醇形成的影响进行了研究。在红豆杉细胞悬浮培养20d即指数生长期末,每1L细胞悬浮培养物中加入30μmolCuCl2,Cu2+促进紫杉醇形成的作用最大。添加CuCl2对红豆杉细胞生长没有明显影响,但引起培养细胞中可溶性蛋白质含量、苯丙氨酸解氨酶活性及培养基pH值的变化。
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z
Resumo:
The structural and magnetic properties of Cu+ ions-implanted GaN films have been reported. Eighty kilo-electron-volt Cu+ ions were implanted into n-type GaN film at room temperature with fluences ranging from 1 x 10(16) to 8 x 10(16) cm(-2) and subsequently annealed at 800 degrees C for 1 h in N-2 ambient. PIXE was employed to determine the Cu-implanted content. The magnetic property was measured by the Quantum Design MPMS SQUID magnetometer. No secondary phases or clusters were detected within the sensitivity of XRD. Raman spectrum measurement showed that the Cu ions incorporated into the crystal lattice positions of GaN through substitution of Ga atoms. Apparent ferromagnetic hysteresis loops measured at 10 K were presented. The experimental result showed that the ferromagnetic signal strongly increased with Cu-implanted fluence from 1 x 10(16) to 8 x 10(16) cm(-2).
Resumo:
Using a first-principles method, we investigate the structural and electronic properties of grain boundaries (GBs) in polycrystalline CdTe and the effects of copassivation of elements with far distinct electronegativities. Of the two types of GBs studied in this Letter, we find that the Cd core is less harmful to the carrier transport, but is difficult to passivate with impurities such as Cl and Cu, whereas the Te core creates a high defect density below the conduction band minimum, but all these levels can be removed by copassivation of Cl and Cu. Our analysis indicates that for most polycrystalline systems copassivation or multipassivation is required to passivate the GBs.
Resumo:
The thermodynamic properties of the spin-1/2 diamond quantum Heisenberg chain model have been investigated by means of the transfer matrix renormalization group (TMRG) method. Considering different crystal structures, by changing the interactions among different spins and the external magnetic fields, we first investigate the magnetic susceptibility, magnetization, and specific heat of the distorted diamond chain as a model of ferrimagnetic spin systems. The susceptibility and the specific heat show different features for different ferromagnetic (F) and antiferromagnetic (AF) interactions and different magnetic fields. A 1/3 magnetization plateau is observed at low temperature in a magnetization curve. Then, we discuss the theoretical mechanism of the double-peak structure of the magnetic susceptibility and the three-peak structure of the specific heat of the compound Cu-3(CO3)(2)(OH)(2), on which an elegant measurement was performed by Kikuchi [Phys. Rev. Lett. 94, 227201 (2005)]. Our computed results are consistent with the main characteristics of the experimental data. Meanwhile, we find that the double-peak structure of susceptibility can be found in several different kinds of spin interactions in the diamond chain. Moreover, a three-peak behavior is observed in the TMRG results of magnetic susceptibility. In addition, we perform calculations relevant for some experiments and explain the characteristics of these materials. (c) 2007 American Institute of Physics.
Resumo:
Diluted magnetic nonpolar GaN:Cu films have been fabricated by implanting Cu ions into unintentionally doped nonpolar a-plane(1 1 (2) over bar 0) GaN films and a subsequent thermal annealing process. The structural, morphological and magnetic characteristics of the samples have been investigated by means of high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), and superconducting quantum interference device (SQUID). The sample shows a clear ferromagnetism behavior at room temperature. It is significantly shown that with a Cu concentration as low as 0.75% the sample exhibits a saturation magnetization about 0.65 mu(B)/Cu atom. Moreover, the possible origin of the ferromagnetism for the sample was also discussed briefly. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Diluted-magnetic nonpolar GaN:Cu films have been fabricated by implanting Cu ions into p-type nonpolar a-plane (1120) GaN films with a subsequent thermal annealing process. The impact of the implantation dose on the structural. morphological and magnetic characteristics of the samples have been investigated by means of high-resolution X-ray diffraction (HRXRD). atomic force microscopy (AFM), and superconducting quantum interference device (SQUID). The XRD and AFM analyses show that the structural and morphological characteristics of samples deteriorated with the increase of implantation dose. According to the SQUID analysis. obvious room-temperature ferromagnetic properties of samples were detected. Moreover, the saturation magnetization per Cu atom decreased as the implantation dose increased. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work was supported by the Natural Science Foundation of China (Grant No. 60876068) and The Project sponsored by SRF for ROCS (Grant No. 08Y1010000), SEM
Resumo:
The room-temperature photoluminescence (PL) of copper doped zinc sulfide (ZnS:Cu) nanoparticles were investigated. These ZnS:Cu nanoparticles were synthesized by a facile wet chemical method, with the copper concentration varying from 0 to 2 mol%. By Gaussian fitting, the PL spectrum of the undoped ZnS nanoparticles was deconvoluted into two blue luminescence peaks (centered at 411 nm and 455 nm, respectively), which both can be attributed to the recombination of the defect sates of ZnS. But for the doped samples, a third peak at about 500 nm was also identified. This green luminescence originates from the recombination between the shallow donor level (sulfur vacancy) and the t(2) level of Cu2+. With the increase of the CU2+ concentration, the green emission peak is systematically shifted to longer wavelength. In addition, it was found that the overall photoluminescence intensity is decreased at the Cu2+ concentration of 2%. The concentration quenching of the luminescence may be caused by the formation of CuS compound. (c) 2005 Elsevier B.V. All rights reserved.