268 resultados para Thin cell layer


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of ZnO thin films were deposited on ZnO buffer layers by DC reactive magnetron sputtering. The buffer layer thickness determination of microstructure and optical properties of ZnO films was investigated by X-ray diffraction (XRD), photoluminescence (PL), optical transmittance and absorption measurements. XRD results revealed that the stress of ZnO thin films varied with the buffer layer thickness. With the increase of buffer layer thickness, the band gap edge shifted toward longer wavelength. The near-band-edge (NBE) emission intensity of ZnO films deposited on ZnO buffer layer also varied with the increase of thickness due to the spatial confinement increasing the Coulomb interaction between electrons and holes. The PL measurement showed that the optimum thickness of the ZnO buffer layer was around 12 nm. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thin-film design used to fabricate multi-layer dielectric (MLD) gratings should provide high transmittance during holography exposure, high reflectance at use wavelength and sufficient manufacturing latitude of the grating design making the MLD grating achieve both high diffraction efficiency and low electric field enhancement. Based on a (HLL)H-9 design comprising of quarter-waves of high-index material and half-waves of low-index material, we obtain an optimum MLD coating meeting these requirements by inserting a matching layer being half a quarter-wave of Al2O3 between the initial design and an optimized HfO2 top layer. The optimized MLD coatings exhibits a low reflectance of 0.017% under photoresist at the exposure angle of 17.8 degrees for 413 nm light and a high reflectance of 99.61% under air at the use angle of 51.2 degrees for 1053 nm light. Numerical calculation of intensity distribution in the photoresist coated on the MLD film during exposure shows that standing-wave patterns are greatly minimized and thus simulation profile of photoresist gratings after development demonstrates smoother shapes with lower roughness. Furthermore, a MLD gratings with grooves etched into the top layer of this MLD coating provides a high diffraction efficiency of 99.5% and a low electric field enhancement ratio of 1.53. This thin-film design shows perfect performances and can be easily fabricated by e-beam evaporation. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A highly efficient light-trapping structure, consisting of a diffractive grating, a distributed Bragg reflector (DBR) and a metal reflector was proposed. As an example, the proposed light-trapping structure with an indium tin oxide (ITO) diffraction grating, an a-Si:H/ITO DBR and an Ag reflector was optimized by the simulation via rigorous coupled-wave analysis (RCWA) for a 2.0-mu m-thick c-Si solar cell with an optimized ITO front antireflection (AR) layer under the air mass 1.5 (AM1.5) solar illumination. The weighted absorptance under the AM1.5 solar spectrum (A(AM1.5)) of the solar cell can reach to 69%, if the DBR is composed of 4 pairs of a-Si:H/ITOs. If the number of a-Si:H/ITO pairs is up to 8, a larger A(AM1.5) of 72% can be obtained. In contrast, if the Ag reflector is not adopted, the combination of the optimized ITO diffraction grating and the 8-pair a-Si:H/ITO DBR can only result in an A(AM1.5) of 68%. As the reference, A(AM1.5) = 31% for the solar cell only with the optimized ITO front AR layer. So, the proposed structure can make the sunlight highly trapped in the solar cell. The adoption of the metal reflector is helpful to obtain highly efficient light-trapping effect with less number of DBR pairs, which makes that such light-trapping structure can be fabricated easily.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polymorphous silicon (pm-Si:H) films have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the pm-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. There are a blue shift for the stretching mode of IR spectra and a red shift for the wagging mode. The shifts are attributed to the variation of the microstructure. By using pm-Si:H film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100mw/cm(2)) at room temperature (T-R).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

InAs quantum dots (QDs) were grown On Ultra-thin In0.15Ga0.85As strained layers by molecular beam epitaxy on GaAs (00 1) substrates. Combining reflection high-energy electron diffraction, atomic force microscopy and transmission electron microscopy, we analyzed the stress field of dislocations in the strained layer/substrate interface. Specially, we revealed the relative position of QDs and dislocations. We found that the difference of the stress field around dislocations is prominent when the strained layer is ultra-thin and the stress field will directly affect the following growth. On the strained layer surface, In0.15Ga0.85As ridges will form at the inclined upside of dislocations. Then, InAs QDs will prefer nucleating on the ridges, there is relatively small stress between InAs and In0.15Ga0.85As. By selecting ultra-thin In0.15Ga0.85As layer (50 nm) and controlling the QD layer at just form QDs, we obtained ordered InAs QDs. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on the comparative studies of epitaxial SiC films grown on silicon-on-insulator (SOI) and Si bulk substrates. The silicon-over-layer (SOL) on the SOI has been thinned down to different thicknesses, with the thinnest about 10 nm. It has been found that the full-width-at-half-maxim in the X-ray diffraction spectrum from the SiC films decreases as the SOL thickness decreases, indicating improved quality of the SiC film. A similar trend has also been found in the Raman spectrum. One of the potential explanations for the observation is strain accommodation by the ultra-thin SOI substrate. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin A1N film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a new structure of GaN based Schottky barrier ultraviolet photodetector, in which a thin n-type AlGaN window layer is added on the conventional n(-)-GaN/n(+)-GaN device structure. The performance of the Schottky barrier ultraviolet photodetector is found to be improved by the new structure. The simulation result shows that the new structure can reduce the negative effect of surface states on the performance of Schottky barrier GaN photodetectors, improving the quantum efficiency and decreasing the dark current. The investigations suggest that the new photodetector can exhibit a better responsivity by choosing a suitably high carrier concentration and thin thickness for the AlGaN window layer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Enhancement of the electrical properties in an AlGaN/GaN high electron mobility transistor (HEMT) structures was demonstrated by employing the combination of a high mobility GaN channel layer and an AlN interlayer. The structures were grown on 50 mm semi-insulating (SI) 6H-SiC substrates by metalorganic chemical vapor deposition (MOCVD). The room temperature (RT) two-dimensional electron gas (2DEG) mobility was as high as 2215 cm(2)/V s, with a 2DEG concentration of 1.044 x 10(13)cm(-2). The 50 mm HEMT wafer exhibited a low average sheet resistance of 251.0 Omega/square, with a resistance uniformity of 2.02%. The 0.35 Pin gate length HEMT devices based on this material structure, exhibited a maximum drain current density of 1300 mA/mm, a maximum extrinsic transconductance of 314 mS/mm, a current gain cut-off frequency of 28 GHz and a maximum oscillation frequency of 60 GHz. The maximum output power density of 4.10 W/mm was achieved at 8 GHz, with a power gain of 6.13 dB and a power added efficiency (PAE) of 33.6%. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diphasic silicon films (nc-Si/a-Si:H) have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the nc-Si/a-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. The blue shift for the stretching mode and red shift for the wagging mode in the IR spectra also show the variation of the microstructure. By using this kind of film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51 % and a stabilized efficiency of 8.01% (AM 1.5, 100 mw/cm(2)) at room temperature. (c) 2006 Published by Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thin GaAs/AlAs and GaAs/GaAs buffer layer structure have been fabricated on the GaAs(001) substrate. The top GaAs buffer layer is decoupled from the host substrate by introduction of a low temperature thin interlayer (AlAs or GaAs), which was mechanically behaved like the compliant substrate. Four hundred nanometer In0.25Ga0.75As films were grown on these substrates and the traditional substrate directly. Photoluminescence (PL), double-crystal X-ray diffraction (DCXRD) and atomic force microscopy (AFM) measurements were used to estimate the quality of the In0.25Ga0.75As layer and the compliant effects of the low temperature buffer layer. All the measurements shown that the qualities of epilayer have been improved and the substrate have been deteriorated severely. The growth technique of the thin GaAs/AlAs structure was found to be simple but very powerful for heteroepitaxy. (C) 2003 Elsevier Science B.V All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structure and optical properties of In(Ga)As with the introduction of InGaAlAs or InAlAs seed dot layers are investigated. The area density and size homogeneity of the upper InGaAs dots are efficiently improved by the introduction of a buried layer of high-density dots. Our explanation for the realization of high density and size homogeneity dots is presented. When the GaAs spacer layer is too thin to cover the seed dots, the upper dots exhibit some optical properties like those of a quantum well. By analyzing the growth dynamics, we refer to this kind of dot as an empty-core dot. (C) 2003 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structure and optical properties of In(Ga)As grown with the introduction of InGaAlAs or InAlAs seed dots layers are investigated. The area density and size homogeneity of the upper InGaAs dots are efficiently improved with the introduction of a layer of high-density buried dots. When the GaAs spacer layer is too thin to cover the seed dots, the upper dots exhibit the characterization of a quantum well. By analyzing the growth dynamics, we refer to it as an empty-core structure dot. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diphasic silicon films (nc-Si/a-Si:H) have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the nc-Si/a-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. The blue shift for the stretching mode and red shift for the wagging mode in the IR spectra also show the variation of the microstructure. By using this kind of film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51 % and a stabilized efficiency of 8.01% (AM 1.5, 100 mw/cm(2)) at room temperature. (c) 2006 Published by Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Si thin films with different structures were deposited by plasma enhanced chemical vapor deposition (PECVD), and characterized via Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The passivation effect of such different Si thin films on crystalline Si surface was investigated by minority carrier lifetime measurement via a method, called microwave photoconductive decay (mu PCD), for the application in HIT (heterojunction with intrinsic thin-layer) solar cells. The results show that amorphous silicon (a-Si:H) has a better passivation effect due to its relative higher H content, compared with microcrystalline (mu c-Si) silicon and nanocrystalline silicon (nc-Si). Further, it was found that H atoms in the form of Si-H bonds are more preferred than those in the form of Si-H-2 bonds to passivate the crystalline Si surface. (C) 2009 Elsevier B.V. All rights reserved.