128 resultados para Solid Tumors
Resumo:
A macro matrix solid-phase dispersion (MSPD) method was developed to extract 266 pesticides from apple juice samples prior to gas chromatography-mass selective detection (GC-MSD) determination. A 10 g samples was mixed with 20 g diatomaceous earth. The mixture was transferred into a glass column. Pesticide residues were leached with a 160 mL hexane-dichloromethane (1:1) at 5 mL/min. Two hundred and sixty-six pesticides were divided into three groups and detected by GC-MSD under selective ion monitoring. The proposed method takes advantage of both liquid-liquid extraction and conventional MSPD methods. Application was illustrated by the analysis of 236 apple juice samples produced in Shaanxi province China mainland this year. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Ultrasonic solvent extraction combined with solid-phase microextraction (SPME) with calix[4]arene/hydroxy-terminated silicone (C[4]/OHTSO) oil coated fiber was used to extract phthalate acid esters (PAEs) plasticizers in plastic, such as blood bags, transfusion tubing, food packaging bag, and mineral water bottle for analysis by gas chromatography (GC). Both extraction parameters (i.e. extraction time, extraction temperature, ionic strength) and conditions of the thermal desorption in a GC injector were optimized by analysis of eight phthalates. The fiber shows wonderful sensitivity and selectivity to the tested compounds. Owing to its high thermal stability (380 degreesC), the carryover effect that often encountered when using conventional fibers can be reduced by appropriately enhancing the injector temperature. The method showed linear response over two to four orders of magnitude with correlation coefficients (r) better than 0.996, and limits of detection (LOD) ranged between 0.006 and 0.084 mug l(-1). The relative standard deviation values obtained were less than or equal to 10%. bis-2-Ethylhexyl phthalate (DEHP) was the sole analyte detected in these plastics and recoveries were in the ranges 95.5-101.4% in all the samples. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a method for trace level analysis of microcystins in water using solid-phase extraction and high performance liquid chromatography. The optimized condition enabled the determination of common microcystins at levels as low as 0.02 similar to 0.05 mug/L, and the liner range is from 0.1 mug/L to 50 mug/L. The method has been applied to the analysis of field sample from Dianchi lake.
Resumo:
In this work, both,solid phase microextraction (SPME) and solid phase extraction(SPE) were used to enrich organochlorine compounds in water samples and analyzed by gas chromatography with electron capture detector. The operating conditions of SPME have been studied and different kinds of solid phase were compared. Linear alkybenzene sulfonate(LAS) was added to the samples to investigate its effect on the analysis. The results indicated that polyacrylate was better than other commercial solid phases in extraction of moderated polar organic compounds and the sensitivity of SPME was higher than SPE. LAS affect much in liquid-liquid extraction and headspace SPME; but it has little effect on SPE and direct-SPME method. The applications showed that SPME was a fast and effective method in sample preparation.
Resumo:
A novel sol-gel method is applied for the preparation of solid-phase microextraction (SPME) fibers. Scanning electron microscopy experiments suggested a porous structure for the poly(dimethylsiloxane) (PDMS) coating. SPME-GC analysis provided evidence that the sol-gel fibers have some advantages, such as high thermal stability, efficient extraction rates, high velocities of mass transfer, and spacious range of application.
Resumo:
Extraction experiments with spiking of C-13(12)-PCDD/Fs were performed with a variety of PCDD/Fs contaminated samples. The extraction recovery of PCDD/Fs was mainly influenced by PCDD/Fs concentration and the sample matrix. Generally, the first soxhlet extraction with toluene has suitable recovery. From the selected samples, only FAMS4 and 5 which are fly ashes with high concentration, the recovery of the first soxhlet extraction with 24 hr. is low, but PCDD/Fs were almost completely removed after 72 hr. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
In this article, the ZnO quantum dots-SiO2 (Z-S) nanocomposite particles were first synthesized. Transparent Z-S/epoxy super-nanocomposites were then prepared by introducing calcined Z-S nanocomposite particles with a proper ratio of ZnO to SiO2 into a transparent epoxy matrix in terms of the filler-matrix refractive index matching principle. It was shown that the epoxy super-nanocomposites displayed intense luminescence with broad emission spectra. Moreover, the epoxy super-nanocomposites showed the interesting afterglow phenomenon with a long phosphorescence lifetime that was not observed for ZnO-QDs/epoxy nanocomposites. Finally, the transparent and light-emitting Z-S/epoxy super-nanocomposites were successfully employed as encapsulating materials for synthesis of highly bright LED lamps.
Resumo:
Quantum measurement will inevitably cause backaction on the measured system, resulting in the well-known dephasing and relaxation. In this paper, in the context of solid-state qubit measurement by a mesoscopic detector, we show that an alternative backaction known as renormalization is important under some circumstances. This effect is largely overlooked in the theory of quantum measurement.
Resumo:
High material quality is the basis of quantum cascade lasers (QCLs). Here we report the solid source molecular beam epitaxy (MBE) growth details of realizing high quality of InGaAs/InAlAs QCL structures. Accurate control of material compositions, layer thickness, doping profile, and interface smoothness can be realized by optimizing the growth conditions. Double crystal x-ray diffraction discloses that our grown QCL structures possess excellent periodicity and sharp interfaces. High quality laser wafers are grown in a single epitaxial run. Room temperature continuous-wave (cw) operation of QCLs is demonstrated.
Resumo:
Quantum measurement of a solid-state qubit by a mesoscopic detector is of fundamental interest in quantum physics and an essential issue in quantum computing. In this work, by employing a unified quantum master equation approach constructed in our recent publications, we study the measurement-induced relaxation and dephasing of the coupled-quantum-dot states measured by a quantum-point contact. Our treatment pays particular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy exchange between the qubit and detector during the measurement process. As a result, our theory is applicable to measurement at arbitrary voltage and temperature. Both numerical and analytical results for the qubit relaxation and dephasing are carried out, and important features are highlighted in concern with their possible relevance to future experiments.
Resumo:
Three different inorganic-organic hetero-junctions (A : ITO/SiO2/Alq(3)/Al, B: ITO/Alq3/SiO2/Al and C: ITO/SiO2/Alq(3)/ SiO2/Al) were fabricated. The emission can be observed only under positive bias in devices A and B, but under both biases in device C according to their brightness waveforms. With increasing voltage, the increase in blue emission in devices B and C is faster than that in green emission. This is because that the recombination of hot electrons and holes, i.e., electron-hole pairs, produced blue emission in devices B and C, and the recombination of electrons injected from Al with the accumulated holes, which are excited by hot electrons, produced green emission in device A. Hence, the emissions of the devices are attributed to not only the recombination of electrons and accumulated holes, but also the cathodoluminescence-like (CL-like) emission.
Resumo:
We realize a stable self-starting passively mode-locking all-solid-state laser by using novel GaAs mirrors as the absorber and output coupler. The GaAs mirror is grown by the technology of metal organic chemical vapour deposition at low temperature. With such an absorber as the output coupler in the laser resonator, laser pulses with duration of 42ps were generated at a repetition rate of 400MHz, corresponding to the average power of 590mW.
Resumo:
Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of a Lindblad-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of a non-Lindblad-type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.
Resumo:
We report, for the first time to the best of our knowledge, on a passively Q-switched Nd:YVO4 laser with a GaAs absorber grown at low temperature (LT) by metal organic vapor phase expitaxy. Using the LT GaAs absorber as well as an output coupler, a passively Q-switched laser whose pulse duration is as short as 90 ns, was obtained.