115 resultados para Reputation for Toughness
Resumo:
The technology of laser quenching is widely used to improve the surface properties of steels in surface engineering. Generally, laser quenching of steels can lead to two important results. One is the generation of residual stress in the surface layer. In general, the residual stress varies from the surface to the interior along the quenched track depth direction, and the residual stress variation is termed as residual stress gradient effect in this work. The other is the change of mechanical properties of the surface layer, such as the increases of the micro-hardness, resulting from the changes of the microstructure of the surface layer. In this work, a mechanical model of a laser-quenched specimen with a crack in the middle of the quenched layer is developed to quantify the effect of residual stress gradient and the average micro-hardness over the crack length on crack tip opening displacement (CTOD). It is assumed that the crack in the middle of the quenched layer is created after laser quenching, and the crack can be a pre-crack or a defect due to some reasons, such as a void, cavity or a micro-crack. Based on the elastic-plastic fracture mechanics theory and using the relationship between the micro-hardness and yield strength, a concise analytical solution, which can be used to quantify the effect of residual stress gradient and the average micro-hardness over the crack length resulting from laser quenching on CTOD, is obtained. The concise analytical solution obtained in this work, cannot only be used as a means to predict the crack driving force in terms of the CTOD, but also serve as a baseline for further experimental investigation of the effect after laser-quenching treatment on fracture toughness in terms of the critical CTOD of a specimen, accounting for the laser-quenching effect. A numerical example presented in this work shows that the CTOD of the quenched can be significantly decreased in comparison with that of the unquenched. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
abstract {Silica glass is an attractive host matrix for the emission ions of rare earth and transition metal ions because it has small thermal expansion coefficient, strong thermal resistance, large fracture strength and good chemical durability and so on. However, a major obstacle to using it as the host matrix is a phenomenon of concentration quenching. In this paper, we introduces a novel method to restrain the concentration quenching by using a porous glass with SiO2 content > 95% (in mass) and prepare intense fluorescence high-SiO2 glasses and high-SiO2 laser glass. The porous glass with high-SiO2 content was impregnated with rare-earth and transition metal ions, and consequently sintered into a compact non-porous glass in reduction or oxidization atmospheres. Various intense fluorescence glasses with high emission yields, a vacuum ultraviolet-excited intensely luminescent glass, high silica glass containing high concentration of Er3+ ion, ultrabroad infrared luminescent Bi-doped high silica glass and Nd3+-doped silica microchip laser glass were obtained by this method. The porous glass is also favorable for co-impregnating multi-active-ions. It can bring effective energy transferring between various active ions in the glass and increases luminescent intensity and extend range of excitation spectrum. The luminescent active ions-doped high-SiO2 glasses are potential host materials for high power solid-state lasers and new transparent fluorescence materials.}
Resumo:
Hot pressing (HP) at higher sintering temperature has been a traditional and prevalent technique for the fabrication of alpha-SiAlON. In order to prepare translucent SiAlON more easily, LiF was used as a non-oxide sintering additive to lower the sintering temperature to <= 1650 degrees C. As a result, all of the samples possessed a good hardness and fracture toughness. At the same time, the lower temperature sintered samples showed a higher optical transmittance in the range of 2.5-5.5 mu m wavelength (0.5 mm in thickness). The maximum infrared transmission reached 68% at a wavelength of 3.3 mu m. The present work shows that the sintering process has a strong effect on microstructure and property of alpha-SiAlON. To be exact, a lower sintering temperature and longer holding time can produce some fully-developed microstrcture, which is beneficial for the optical transmittance. (C) 2008 The Ceramic Society of Japan. All rights reserved.
Resumo:
La2Zr2O7是一种近年来才提出的新型热障涂层材料,该材料熔点高,在熔点以下不发生相变,热导率低,抗烧结及没有氧传输发生,这些特点使得它作为一种高温下应用的热障涂层材料越来越引起人们的重视。但是,由于该材料的热膨胀系数和断裂韧性比较低,它的实际应用受到了限制。 在本论文中,使用高压烧结的方法获得了致密化的纳米La2Zr2O7块体材料,并对其断裂韧性和热膨胀系数进行了研究。得到的La2Zr2O7纳米材料的断裂韧性和热膨胀系数分别为1.98MPam1/2和9.6×10-6K-1 (200-1000℃),这些数值明显高于非纳米的La2Zr2O7陶瓷(断裂韧性和热膨胀系数分别为1.40 MPam1/2 和 9.1×10-6 K-1,该结果表明纳米化是一种提高材料断裂韧性和热膨胀系数的有效方法。在La2Zr2O7纳米粉末中加入8YSZ纳米颗粒,高压烧结后使其颗粒充分生长,在得到的复相化合物中观察到形成了类似棒状晶体的自增韧相,使得复合材料的断裂韧性(1.88 MPam1/2)比La2Zr2O7有所提高,甚至超过了同样条件下制备的8YSZ样品的断裂韧性。 La2Zr2O7的断裂韧性也可以通过在基体中添加BaTiO3铁电材料得到明显的提高。当添加BaTiO3的体积含量达到10vol%时,4.5GPa,1450℃高压烧结10min得到的复合材料断裂韧性达1.98 MPam1/2,明显高于同条件下烧结的La2Zr2O7 (1.60MPam1/2)。应力诱导下BaTiO3的电畴转向是主要的增韧原因。随着BaTiO3颗粒添加的体积含量增加,复相化合物的热膨胀系数也明显提高。当掺杂20vol%BaTiO3时,得到的复合材料平均热膨胀系数达到10.2×10-6K-1 (150~1200℃)。 我们通过在4.5GPa, 1650℃高压烧结5min的方法还获得了掺杂YAG纳米颗粒的La2Zr2O7纳米复相陶瓷。在室温下测量了材料的维氏硬度,并通过压痕裂纹长度计算出了材料的断裂韧性。随着YAG纳米颗粒体积含量的增加,纳米复相陶瓷的断裂韧性和维氏硬度都依次增加,当添加20vol%的YAG纳米颗粒时达到最大,分别为1.93 MPam1/2和11.45GPa。断裂韧性增加的机理可归结为以下三点:一是YAG纳米颗粒的添加提高了La2Zr2O7基体的晶界强度,二是基体晶粒尺寸变化的影响,三是YAG纳米颗粒对裂纹的偏转和钉扎作用。添加微米YAG颗粒的复相化合物因为和纳米复相陶瓷具有不同的增韧机制,因此断裂韧性的变化趋势也不相同,在掺入10vol%的YAG微米颗粒时,复合材料的断裂韧性最大,而后降低,当掺入YAG微米粒子的体积含量达到20vol%时,断裂韧性甚至低于La2Zr2O7。 从20世纪90年代开始,电纺作为一种合成纤维的办法越来越吸引人们的注意。其合成的纤维长度长,直径均匀,并且组成范围很广。最初,电纺只是被用来合成一些有机聚合物的纤维,最近,很多研究组开始致力于使用电纺的方法合成复合纤维或者陶瓷纤维。 在本论文中,我们使用电纺的方法获得了La2Zr2O7纳米纤维和SiC单晶纳米线。1000℃煅烧得到的La2Zr2O7纳米纤维具有烧绿石结构,直径在200~500nm之间。同样的温度煅烧时得到的La2Zr2O7纳米纤维的比表面积要明显高于粉末样品的,表明纤维的抗烧结性能比粉末的高。得到的SiC纳米线直径在50~100nm之间,表面有一约5nm厚的无定形的SiO2薄层。 使用电纺的方法,恰当的控制煅烧条件,我们获得了La2Ce2O7, La2(Zr0.745Ce0.386)2O7.524和8YSZ中空纤维。这种中空结构减小了粒子之间的接触面积,提高了材料的抗烧结性能。在扫描电镜分析的基础上,我们总结了这些中空纤维的形成过程。
Resumo:
A theoretical model about the size-dependent interface energy between two thin films with different materials is developed by considering the chemical bonding contribution based on the thermodynamic expressions and the structure strain contribution based on the mechanical characteristics. The interface energy decreases with reducing thickness of thin films, and is determined by such available thermodynamic and mechanical parameters as the melting entropy, the melting enthalpy, the shear modulus of two materials, etc. The predicted interface energies of some metal/MgO and metal/Al2O3 interfaces based on the model are consistent with the results based on the molecular mechanics calculation. Furthermore, the interface fracture properties of Ag/MgO and Ni/Al2O3 based on the atomistic simulation are further compared with each other. The fracture strength and the toughness of the interface with the smaller structure interface energy are both found to be lower. The intrinsic relations among the interface energy, the interface strength, and the fracture toughness are discussed by introducing the related interface potential and the interface stress. The microscopic interface fracture toughness is found to equal the structure interface energy in nanoscale, and the microscopic fracture strength is proportional to the fracture toughness. (C) 2010 American Institute of Physics. [doi:10.1063/1.3501090]
Resumo:
以热喷涂NiCrBSi涂层/钢基体为材料模型,利用将涂层置于受压侧的反向三点弯曲法试验,对热喷涂涂层界面断裂现象进行分析并建立相应的界面断裂韧性计算模型.结果表明,界面裂纹起始于三点弯曲试样中部,对应于加载压头与涂层接触区域正下方的界面上,并向两侧扩展,伴随涂层屈曲,形成分层屈曲的破坏形貌.根据分层屈曲形貌建立计算模型,通过分层屈曲几何参数与屈曲临界应力、涂层内真实应力以及界面断裂韧性的关系,获得界面断裂韧性值.
Resumo:
Thermal properties and crystallization-behavior of ultrafine fully-vulcanized powdered rubber (UFPR) toughened poly propylene (PP) were studied by Differential scanning calorimetry (DSC) and Wide angle X-ray diffraction (WAXD) measurements. It was found that the fraction of beta-form in the PP crystal increased at first, then sharply deceased up to zero with increasing UFPR content
Resumo:
Morphologies, crystallization behavior and mechanical properties of polypropylene(PP)/syndiotactic 1,2-polybutadiene(s-1,2 PB) blends were investigated. Morphology observation shows the well dispersed domains of s-1,2 PB in PP matrix with the rather small domain sizes from 0.1 to 0.5 mu m when the s-1,2 PB content increases from 5% to 20% (mass fraction) in the blends, and the phase structure tends to become co-continuous as s-1,2 PB content further increases.
Sulfonated poly(arylene-co-imide)s as water stable proton exchange membrane materials for fuel cells
Resumo:
A novel sulfonated poly(arylene-co-imide)s were synthesized by Ni(0) catalytic copolymerization of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and naphthalimide dichloride monomer. The synthesized copolymers with the - SO3H group on the side-chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. Because of the introduction of electron donating phenoxy groups into naphthalimide moieties, the hydrolysis of the imide rings was depressed. The resulting copolymers exhibited excellent water stability. The copolymer membranes display no apparently change in appearance, flexibility, and toughness after a soaking treatment in pressurized water at 140 degrees C for 250 h.
Resumo:
A novel nano-scaled bulk hard material (W0.5Al0.5)C-Co with "rounded" grains was prepared by nanocrystalline "rounded" (W0.5Al0.5)C powders with "rounded" particle shape in this study. The nano-scaled "rounded" particles do not contain sharp edges, which form local tensile stress concentrations on loading of the composite, thus leading to improved toughness and reduced sensitivity to crack. Nanocrystalline (W0.5Al0.5)C powders with "rounded" particle shape were used as starting materials. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to characterize the samples.
Resumo:
La2Zr2O7 (LZ) is a promising thermal barrier coating material for the high-temperature applications, which could be significantly toughened by the BaTiO3 piezoelectric phase incorporated into the matrix. The composites of xBaTiO(3)/(l-x)LZ (x=5, 10, 15, 20 vol%, LZ-x-BaTiO3) were densified by means of high-pressure sintering (HPS) under a pressure of 4.5 GPa at 1450 degrees C for 10 min, by which a high relative density above 93% could be obtained.
Resumo:
We report a facile method to create the chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. Great improvements in mechanical properties such as compressive failure strength and toughness have been achieved for the chemically converted graphene oxide/epoxy resin for a 0.0375 wt% loading of chemically converted graphene oxide sheets in epoxy resin by 48.3% and 1185.2%, respectively. In addition, the loading of graphene is also conveniently tunable even to 0.15 wt% just by increasing the volume of the graphene oxide dispersion.
Resumo:
Polydisperse, functionalized, chemically converted graphene (f-CCG) nanosheets, which can be homogeneously distributed into water, ethanol, DMF, DMSO and 3-aminopropyltriethoxysilane (APTS), were obtained via facile covalent functionalization with APTS. The resulting f-CCG nanosheets were characterized by FTIR, XPS, TGA, EDX, AFM, SEM, and TEM. Furthermore, the f-CCG nanosheets as reinforcing components were extended into silica monoliths. Compressive tests revealed that the compressive failure strength and the toughness of f-CCG-reinforced APTS monoliths at 0.1 wt% functionalized, chemically converted graphene sheets compared with the neat APTS monolith were greatly improved by 19.9% and 92%, respectively.
Resumo:
The microstructure and mechanical properties of beta-nucleated iPP before and after being annealed at different temperatures (90-160 degrees C) have been analyzed, Annealing induced different degrees of variation in fracture toughness of beta-nucleated iPP samples. namely, slight enhancement at relatively low annealing temperatures (< 110 degrees C) and great improvement at moderate temperatures (120-130 degrees C), whereas dramatic deterioration at relatively high temperatures ( > 140 degrees C) has been observed. The variation of fracture toughness of beta-nucleated iPP is observed to be dependent on the content of beta-NA. Experiments, including scanning electronic microscope (SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and dynamic mechanical analysis (DMA), are performed to study the variations of microstructures as well as the toughening mechanism of the beta-nucleated iPP after being annealed.
Resumo:
BACKGROUND: Blocked isocyanate-functionalized polyolefins have great potential for use in semicrystalline polymer blends to obtain toughened polymers. In this study, poly(butylene terephthalate) (PBT) was blended with allyl N-[2-methyl-4-(2-oxohexahydroazepine-1 -carboxamido)phenyl] carbamate-functionalized poly(ethylene octene) (POE-g-AMPC).RESULTS: New peaks at 2272 and 1720 cm(-1), corresponding to the stretching vibrations of NCO and the carbonyl of NH-CO-N, respectively, in AMPC, appeared in the infrared spectrum of POE-g-AMPC. Both rheological and X-ray photoelectron spectroscopy results indicated a new copolymer was formed in the reactive blends. Compared to uncompatibilized PBT/POE blends, smaller dispersed particle sizes with narrower distribution were found in the compatibilized PBT/POE-g-AMPC blends. There was a marked increase in impact strength by about 10-fold over that of PBT/POE blends with the same rubber content and almost 30-fold higher than that of pure PBT when the POE-g-AMPC content was 25 wt%.