146 resultados para Particle-hole asymmetry
Resumo:
We investigate the energy spectrum of ground state and quasi-particle excitation spectrum of hard-core bosons, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and Bogoliubov approach. The results show that the energy spectrum has a single band structure, and the energy is lower near zero momentum; the excitation spectrum gives corresponding energy gap, and the system is in Mott-insulating state at Tonks limit. The analytic result of energy spectrum is in good agreement with that calculated in terms of Green's function at strong correlation limit.
Resumo:
We have investigated ultraviolet (UV) photorefractive effect of lithium niobate doubly doped with Ce and Cu. It is found the diffraction efficiency shows oscillating behavior Under UV-1ight-recording. A model in which electrons and holes can be excited from impurity centers in the UV region is proposed to study the oscillatory behavior of the diffraction efficiency. Oil the basis of the material equations and the coupled-wave equations, we found that the oscillatory behavior is due to the oscillation of the relative spatial phase shift Phi. And the electron-hole competition may cause the oscillation of the relative spatial phase shift. A switch point from electron grating to hole grating is chosen to realize nonvolatile readout by a red light with high sensitivity (0.4 cm/J). (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
We provide a novel hollow-core holey fibre that owns a random distribution of air holes in the cladding. Our experiments demonstrate that many of the features previously attributed to photonic crystal fibres with perfect arrangement of air holes, in particular, photonic bandgap guidance, can also be obtained in the fibre. Additionally, this fibre exhibits a second guided mode with both the two-lobe patterns, and each pattern is in different colour.
Resumo:
By using an Ar+ ion laser, a tunable Rh 6G dye laser(Linewidth : 0.5 cm(-1)) and a Coherent 899-21 dye laser as light sources and using a monochromator and a phase-locking amplifier, the optical properties of Eu3+ : Y2SiO5 crystal were detected. Persistent spectral hole burning (PSHB) were also observed in (5)Do-(7)Fo transition in the crystal at the temperature of 16 K. For 15 mW dye laser (Wavelength : 579.62 nm) burning the crystal for 0.1 s a spectral hole with about 80 MHz hole width were detected and the hole can been keep for longer than 10 h.
Resumo:
Global information is considered the primitive of visual perception in Gestalt psychology. Further, L. Chen ( 2005) proposed a new theory of topological visual perception. According to this theory, the perception of topological difference is faster than o
Resumo:
Gene duplication is thought to provide raw material for functional divergence and innovation. Fish-specific dmrt2b has been identified as a duplicated gene of the dmrt2a/terra in fish genomes, but its function has remained unclear. Here we reveal that Dmrt2b knockdown zebrafish embryos display a downward tail curvature and have U-shaped somites. Then, we demonstrate that Dmrt2b contributes to a divergent function in somitogenesis through Hedgehog pathway, because Dmrt2b knockdown reduces target gene expression of Hedgehog signaling, and also impairs slow muscle development and neural tube patterning through Hedgehog signaling. Moreover, the Dmrt2b morphants display defects in heart and visceral organ asymmetry, and, some lateral-plate mesoderm (LPM) markers expressed in left side are randomized. Together, these data indicate that fish-specific duplicated dmrt2b contributes to a divergent function in somitogenesis through Hedgehog pathway and maintains the common function for left-right asymmetry establishment.
Resumo:
Sediments and soils collected from the Ya-Er Lake area in China were analysed for the polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyl (PCBs), hexachlorocyclohexane (HCHs) and hexachlorobenzene (HCB). The results indicated the main pollution problems in the Ya-Er Lake area, which was heavily polluted by HCHs and chlorobenzenes, now is dominantly polluted by PCDD/Fs, PCBs and HCB. The occurrence of PCDD/Fs and PCBs with relatively high levels of HpCDDs, OCDD and low chlorinated-substituted PCBs, is attributed to the discharge of waste water and biodegradation. The vertical distributions of HCH-residues are related with the content of organic carbon and particle size. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
The temperature dependence of hole spin relaxation time in both neutral and n-doped ultrathin InAs monolayers has been investigated. It has been suggested that D'yakonov-Perel (DP) mechanism dominates the spin relaxation process at both low and high temperature regimes. The appearance of a peak in temperature dependent spin relaxation time reveals the important contribution of Coulomb scatterings between carriers to the spin kinetics at low temperature, though electron-phonon scattering becomes dominant at higher temperatures. Increased electron screening effect in the n-doped sample has been suggested to account for the shortened spin relaxation time compared with the undoped one. The results suggest that hole spins are also promising for building solid-state qubits.
Resumo:
A new method to test the hole concentration of p-type GaN is proposed, which is carried out by analyzing the spectral response of p-n(+) structure GaN ultraviolet photodetector. It is shown that the spectral response of the photodetector changes considerably with reversed bias. It is found that the difference between photodetector's quantum efficiency at two wavelengths, i.e. 250 and 361 nm, varies remarkably with increasing reversed bias. According to the simulation calculation, the most characteristic change occurs at a reversed voltage under which the p-GaN layer starts to be completely depleted. Based on this effect the carrier concentration of p-GaN can be derived.
Resumo:
A semicrystalline composite, 3, 4, 9, 10 perylenetetracarboxylic dianhydride (PTCDA) doped N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (NPB), has been fabricated and characterized. An organic light-emitting diode using such a composite in hole injection exhibits the improved performance as compared with the reference device using neat NPB in hole injection. For example, at a luminance of 2000 cd/m(2), the former device gives a current efficiency of 2.0cd/A, higher than 1.6cd/A obtained from the latter device. Furthermore, the semicrystalline composite has been shown thermally to be more stable than the neat NPB thin film, which is useful for making organic light emitting diodes with a prolonged lifetime.
Resumo:
The hole-mediated Curie temperature in Mn-doped wurtzite ZnO nanowires is investigated using the k center dot p method and mean field model. The Curie temperature T-C as a function of the hole density has many peaks for small Mn concentration (x(eff)) due to the density of states of one-dimensional quantum wires. The peaks of T-C are merged by the carriers' thermal distribution when x(eff) is large. High Curie temperature T-C > 400 K is found in (Zn,Mn)O nanowires. A transverse electric field changes the Curie temperature a lot. (Zn,Mn)O nanowires can be tuned from ferromagnetic to paramagnetic by a transverse electric field at room temperature. (c) 2007 American Institute of Physics.
Resumo:
We investigate the spin relaxation time of holes in an ultrathin neutral InAs monolayer (1.5 ML) and compare with that of electrons, using polarization-dependent time-resolved photoluminescence (TRPL) experiments. With excitation energies above the GaAs gap, we observe a rather slow relaxation of holes (tau(1h) = 196 +/- 17 ps) that is in the magnitude similar to electrons (tau(1e) = 354 +/- 32 ps) in this ultrathin sample. The results are in good agreement with earlier theoretical prediction, and the phonon scattering due to spin-orbit coupling is realized to play a dominant role in the carrier spin kinetics.
Resumo:
The origin of ferromagnetism in d(0) semiconductors is studied using first-principles methods with ZnO as a prototype material. We show that the presence of spontaneous magnetization in nitrides and oxides with sufficient holes is an intrinsic property of these first-row d(0) semiconductors and can be attributed to the localized nature of the 2p states of O and N. We find that acceptor doping, especially doping at the anion site, can enhance the ferromagnetism with much smaller threshold hole concentrations. The quantum confinement effect also reduces the critical hole concentration to induce ferromagnetism in ZnO nanowires. The characteristic nonmonotonic spin couplings in these systems are explained in terms of the band coupling model.