113 resultados para Offshore oil and gas leases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Hejiaji area lies on eastern part of Shanbei Slope in Ordos Basin and the primary oil-bearing bed is Chang 4+5 and Chang 6 of Yanchang Formation. It is indicated that the sedimentary facies and reservoir characteristics restricted the hydrocarbon accumulation regularity by the geological information. Therefore, Applied with outcrop observation,core description, geophysical logging interpretation, thin section determination, Scanning Electron Microscope, reservoir lithology and physical property analysis and other analytic machinery, the sedimentary facies ,micro-characteristic and master control factors on hydrocarbon reservoir of Yanchang Formation in Hejiaji area are studied deeply by means of sedimentology,reservoir geology and petroleum geology and provide a reliably reference for later prospect . Delta facies are identified in Hejiaji area and of which distributary channels in delta plain microfacies controlled the distribution of sand bodies and accumulation of oil and gas.The distribution of sand bodies distributed from northeast to southwest are dominated by sedimentary facies . It was shown that the sandstones are medium to granule arkose,which the mud matrix is r and including,calcite,the content of matrix is lower and that mostly are cements which are mainly quartz and feldspar overgrowths and chlorite films, in the second place are hydromica and ferrocalcite. All the sandstones have entered a period of late diagenetic stage in which the dominant diagenesis types in the area are compaction, cementation and dissolution. Remnant intergranular porosity and feldspar dissolved pore are main pore types which are megalospore and medium pore. Medium-fine throat, fine throat and micro-fine throat are the mainly throat type. Pore texture can be classified as megalospore and fine throat type, medium-pore and micro-fine throat type mainly, and they are main accumulate interspace in research region. The reservoir of Yanchang Formation in Hejiaji area is low- pore and low- permeability in the mass which have strong heterogeneity in bed, interbedded and plane. Studying the parameter of pore and permeability comprehensively and consulting prevenient study results of evaluation of reservoir, the reservoir is classifiedⅡ,Ⅲ and Ⅳ three types in which the Ⅱand Ⅲ can be divided into Ⅱa and Ⅱb, Ⅲa and Ⅲb respectively. Ⅱb and Ⅲa are the main reservoir type in Hejiaji area which are about 72.73%and 80%percent of whole reservoir and effective reservoir respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The black rock series of the Upper Ordovician - Lower Silurian in Yangtze area are important source rocks and have exceptional characteristics of sediment, biology, element geochemistry, carbon and oxygen isotope, organic geochemistry and etc. These characteristics are the reflection of important geology events. Due to scarce system research, many problems that relate to the development mechanism of source rocks are not solved. And this restricts the exploration of Oil and gas in South China. In this paper, author studied the palaeo-climate, palaeo-structure and palaeo-environment of the Upper Ordovician - Lower Silurian in Yangtze area by sedimentology, palaeobiology and geochemistry, especially the element geochemistry and isotope geochemistry. The environment model of source rocks is established and some conclusions are drawn. The Upper Ordovician - Lower Silurian sediment types in Yangtze area are mostly black shales, next, mudstone, shell limestone and siltystone. During the Late Ordovician and Earily Silurian periods, a series of big upheaval and depressed are distributed in Yangtze area, and the strata pattern of interphase upheaval and depressed led to Yangtze palaeosea isolated with outside sea. So the stagnant and anoxic environment that are the favorable factor of rich organic black shales sediment is formed in Yangtze area. That Chemical Index of Alteration (CIA) values of the lower Wufeng formation and Longmaxi formation exhibits moderate chemistry weathering suggests they were deposited under the circumstances of the warm and humid climate. However, the large difference of the CIA values of N.extraordinarius-N.ojsuensis biozone suggests that climate is changeful. Therefore, there were two different kinds of climates in the course of the deposition of the Wufeng formation and Longmaxi formation. During the Late Ordovician - Earily Silurian periods, in Yangtze palaeosea, the surface water which is full of rich nutriment and abundant bacterium - algae has high palaeo-productivity that is obvious difference in the different space – time. The content of sulphate changes gradually from the surface water columns to the deep water columns. That is, salinity in the surface water columns is serious low and the salinity in deep water columns is normal. Salinity delamination is favor of the forming of deep anoxic environment. During Wufeng period, the oxidated and low sulfate environment exists in the upper Yangtze palaeosea, while the anoxic and normal salinity environment occurs in the lower Yangtze palaeosea. During the Late Wufeng and Guanyinqiao periods, the steady anoxic environment is replaced by oxidated environment. During the Longmaxi period, layered and anoxic environment recur. In Yangtze area, studies of δ13C of sedimentary organic carbon show a positive δ13C excursion up to 4‰ in the Guanyinqiao stage and then, acute negative excursion in the earily Longmaxi stage. These organic carbon isotopes curve are not only efficient measure of carving up strata borderline, but also reflected the change of originality productivity. These organic carbon isotopes curves showed the process of the enhanced embedding of the global organic carbon. Anoxic event is the main factor of increasing organic carbon embedding speed. And the reduced organic carbon embedding in Hirnantian stage is due to the water column with abundant oxygen. The δ34S values are gradually positive excursion from P.pacificus biozone to N.extraordinarius biozone, and reach the maximum in the Upper Hirnantian stage. Then, the δ34S values are negative excursion. The excursions of δ13C and δ34S reflect the acute change of environment. The formation of source rocks is largely dependent on the nature of organisms from which kerogen is derived and the preservation conditions of organic matter, which are fundamentally dependent on a favourable combination of various elements in which organisms live and are subsequently buried. These elements include palaeoclimate, palaeostructure and palaeoenvironmental conditions. Based on above mentioned circumstance, the coupling connection of source rock and the palaeoclimate, and of palaeostructure and palaeoenvironmental conditions are confirmed, and the “anoxic-marginal depression-photosynthesis” environemental model is established. It is indicated that anoxic played important role in production of organic matter. The produced organic matter was accumulated in marginal depression of the Yangtze area. The photosynthesis is favor of the high productivity. Source rocks have a good perspective, like that of “hot shale” deposited in North Africa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the develop ment of oil and gas exploration, the conventional struc ture exploration era has gradually been substituted by the concealed reser voir exploration technology. Hill poll becomes one of the most important areas in the future exploration. This paper is based on the three-dimensional seismic interpretation of Sudeerte structure. In terms of the overall character istics of Sudeerte structure, we use the coherent cube and the time slice to interpret the fault in plane. For the interpretation,we especially used the well to adjust the interpretation results. The results of seismic attribution analysis, spectrum decomposition and post- stack seismic inversion forecast that hill pools reservoir are dist ributed in several bands along the north-northeast to northeast-east. Xing'anling Group shows that the potential reser voirs are mainly distributed along Bei 14 –Bei 40 and De (99-212) - Bei (16-1) and Budate Group distributed along Bei 14 –Bei 40 in northwestern direction and De (99-212) - Bei (16-1) in north eastern direction. At the same time, by analyzing the structure and the reservoir, and combining with other data, three models are built. The characteristics of reservoirs dist ribution are concl uded,and potent ional favorable exploration dire ctions are predi cted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The function of seismic data in prospecting and exploring oil and gas has exceeded ascertaining structural configuration early. In order to determine the advantageous target area more exactly, we need exactly image the subsurface media. So prestack migration imaging especially prestack depth migration has been used increasingly widely. Currently, seismic migration imaging methods are mainly based on primary energy and most of migration methods use one-way wave equation. Multiple will mask primary and sometimes will be regarded as primary and interferes with the imaging of primary, so multiple elimination is still a very important research subject. At present there are three different wavefield prediction and subtraction methods: wavefield extrapolation; feedback loop; and inverse-scattering series. I mainly do research on feedback loop method in this paper. Feedback loop method includs prediction and subtraction.Currently this method has some problems as follows. Firstly, feedback loop method requires the seismic data used to predict multiple is full wavefield data, but usually the original seismic data don’t meet this assumption, so seismic data must be regularized. Secondly, Multiple predicted through feedback loop method usually can’t match the real multiple in seismic data and they are different in amplitude, phase and arrrival time. So we need match the predicted multiple and that in seismic data through estimating filtering factors and subtract multiple from seismic data. It is the key for multiple elimination how to select a correct matching filtering method. There are many matching filtering methods and I put emphasis on Least-square adaptive matching filtering and L1-norm minimizing adaptive matching filtering methods. Least-square adaptive matching filtering method is computationally very fast, but it has two assumptions: the signal has minimum energy and is orthogonal to the noise. When seismic data don’t meet the two assumptions, this method can’t get good matching results and then can’t attenuate multiple correctly. L1-norm adaptive matching filtering methods can avoid these two assumptions and then get good matching results, but this method is computationally a little slow. The results of my research are as follows: 1. Proposed a method that interpolates seismic traces based on F-K migration and demigration. The main advantage of this method is that it can interpolate seismic traces in any offsets. It shows this method is valid through a simple model. 2. Comparing different Least-square adaptive matching filtering methods. The results show that equipose multi-channel adaptive matching filtering methods can get better results of multiple elimination than other matcing methods through three model data and two field data. 3. Proposed equipose multi-channel L1-norm adaptive matching filtering method. Because L1-norm is robust to large amplitude differences, there are no assumption on the signal has minimum energy and orthogonality, this method can get better results of multiple elimination. 4. Research on multiple elimination in inverse data space. The method is a new multiple elimination method and it is different from those methods mentioned above.The advantages of this method is that it is simple in theory and no need for the adaptive subtraction and computationally very fast. The disadvantage of this method is that it is not stabilized in its solution. The results show that equipose multi-channel and equipose pesudo-multi-channel least-square matching filtering and equipose multi-channel and equipose pesudo-multi-channel L1-norm matching filtering methods can get better results of multiple elimination than other matcing methods through three model data and many field data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Junggar Basin has a large amount of recoverable reserves, However, due to the unfavorable factors, such as bad seismic data quality, complex structure with many faults and less wells, the exploration of oil and gas is still relatively limited, so advanced theoretical guidance and effective technical supports are desirable. Based on the theories of sedimentology, as well as comprehensive studies of outcrops, seismic data, drilling data and setting of this area, the paper establishes the isochronous correlation framework, and analyzes the sedimentary facies types and provenance direction, and obtains the profile and plain maps of the sedimentary facies combined with the logging constrained inversion. Then the paper analyzes the reservoir controlling factors, reservoir lithology attribute, 4-property relationship and sensibility based on the sedimentary facies research, and sets up a 3D geological model using facies controlled modeling. Finally, the paper optimizes some target areas with the conclusions of reservoir, structure and reservoir formation.Firstly, the paper establishs the isochronous correlation framework by the seismic data, drilling data and setting of this area. The sedimentary facies in Tai13 well block are braided river and meandering river according to the analysis of the lithology attribute, logging facies and sedimentary structure attribute of outcrop. The concept of “wetland” is put forward for the first time. The provenance direction of Badaowan and Qigu formation is obtained by the geology setting, sedimentary setting and paleocurrent direction. The paper obtains the profile and plain maps of the sedimentary facies from the sand value of the wells and the sand thickness maps from the logging constrained inversion. Then, this paper takes characteristics and control factors of the Jurassic reservoirs analysis on thin section observation, scanning transmission electron microscope observation and find out the petrology characteristics of reservoir, space types of reservoir and lithofacies division. In this area, primary pores dominate in the reservoir pores, which believed that sedimentation played the most important roles of the reservoir quality and diagenesis is the minor factor influencing secondary porosity. Using stochastic modeling technique,the paper builds quantitative 3-D reservoir Parameter. Finally, combined the study of structure and reservoir formation, the reservoir distribution regularity is concluded: (a) structures control the reservoir formation and accumulation. (b) Locating in the favorable sedimentary facies belt. And the area which meets these conditions mentioned above is a good destination for exploration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oil and gas migration is very important for theoretical hydrocarbon geology study and exploration practice, but related research is weak. Physical simulation is a main method to study oil migration. Systematic experiments were done to quantitatively describe the migration patterns, path characters and oil saturation by adjusting the possible dynamic factors respectively. The following conclusions were drawn. 1. Darcy velocity and pore throat diameter were calculated according to seepage cross-sectional area and glass beads arrangement. With such normalized Darcy velocity and pore throat diameter, the date from one and two dimensional experiments can be reasonably drawn in two phase diagrams. It is found that the migration pattern can be identified using only one dimensionless number L which is defined as the ration of capillary number and Bond number. 2. Oil saturated in the pores between glass beads was used as calibration and oil saturation in the path was measured by magnetic resonance imaging. The results show that oil saturation in the center of migration path can reach 100%, is higher than oil saturation in the edge of migration path. 3. Percolation backbone during secondary oil migration was identified experimentally using Hele-Shaw cell. The backbone formed mainly because of the spatial variation of the cluster conductivity caused by oil saturation heterogeneity, main resistant force change, and path shrinkage and snap-off. Percolation backbone improves hydrocarbon migration efficiency and is a favorable factor for reservoir forming. 4. In the three dimensional filling models, the thickness of the secondary migration path is mall. It is only 2.5cm even for the piston pattern. Inclination of the model is the main influencing factor of the secondary path width.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Located in the Central and West African, Chad, which is not well geological explored, is characterized by Mesozoic- Cenozoic intra-continental rift basins. The boreholes exposed that, during Mesozoic-Cenozoic times, volcanic activities were intense in these basins, but study on volcanic rocks is very weak, especially on those embedded in rift basins, and so far systematic and detailed work has still no carried out. Based on the project of China National Oil and Gas Exploration and Development Corporation, “The analysis of reservoir condition and the evaluation of exploration targets of seven basins in block H in Chad”, and the cooperative project between Institute of Geology and Geophysics, CAS and CNPC International (Chad) Co. Ltd., “Chronology and geochemistry studies on Mesozoic-Cenozoic volcanic rocks from southwestern Chad Basins”, systematic geochronology, geochemistry and Sr-Nd-Pb isotopic geochemistry studies on volcanic rocks from southwestern Chad basins have been done in the thesis for the first time. Detailed geochronological study using whole-rock K-Ar and Ar-Ar methods shows the mainly eruption ages of these volcanic rocks are Late Cretaceous- Paleogene. Volcanic rocks in the well Nere-1 and Figuier-1 from Doba basin are products of the Late Cretaceous which majority of the K-Ar (Ar-Ar) ages fall in the interval 95-75 Ma, whereas volcanic rocks in the well Ronier-1 from Bongor Basin and the Well Acacia-1 from Lake Chad Basin formed in the Paleogene which the ages concentrated in 66-52Ma. Two main periods of volcanic activity can be recognized in the study area, namely, the Late Cretaceous period and the Paleogene period. Volcanic activities have a general trend of south to north migration, but this may be only a local expression, and farther future studies should be carried on. Petrology study exhibits these volcanic rocks from southwestern Chad basins are mainly tholeiitic basalt. Major- and trace elements as well as Sr-Nd-Pb isotopic geochemistry studies show that the late Cretaceous and the Paleogene basalts have a definitely genetic relationship, and magmas which the basalts in southwestern Chad basins derived from were produced by fractional crystallization of olivine and clinopyroxene and had not do suffered from crustal contamination. These basalts are prominently enriched light rare earth elements (LREE), large-ion lithophile elements (LILE) and high field strength elements (HFSE) and depleted compatible elements. They have positive Ba, Pb, Sr, Nb, Ta, Zr, Hf anomalies and negative Th, U, P,Y anomalies. It is possible that the basalts from southwestern Chad basins mainly formed by mixing of depleted mantle (DM) and enriched mantle (EMⅡ) sources. The late Cretaceous basalts have higher (87Sr/86Sr)i ratios than the Paleogene basalts’, whereas have lower (143Nd/144Nd)i ratios than the latter, showing a significant temporal evolution. The mantle sources of the Late Cretaceous basalts may have more enriched mantle(EMⅡ) compositions, whereas those of the Paleogene basalts are relatively more asthenospheric mantle (DM) components. The mantle components with temporal change observed in basalts from Chad basins were probably correlated with the asthenospheric mantle upwelling and lithospheric thinning in Central and Western Africa since Mesozoic. Mesozoic- Cenozoic Volcanism in Chad basins probably is a product of intra- plate extensional stress regime, corresponded to the tectonic setting of the whole West and Central African during Cretaceous. Volcanism is closely correlated with rifting. As time passed from early period to late, the basaltic magma of Chad basins, characterized with shallower genetic depth, higher density and smaller viscosity, probably indicates the gradual strengthening evolution of the rifting. In the initial rife stage, volcanic activities are absent in the study area. Volcanic activities are basiccally corresponded with the strong extensional period of Chad basins, and the eruption of basalts was slightly lagged behind the extensional period. In the post-rift stage (30-0Ma), these basins shifted to the thermal sag phase, volcanic activities in the study area significantly decreased and then terminated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tarim Block is located between the Tianshan Mountains in the north and the Qinghai-Tibet Plateau in the south and is one of three major Precambrian cratonic blocks of China. Obviously, the Paleozoic paleogeographic position and tectonic evolution for the Tarim Block are very important not only for the study of the formation and evolution of the Altaids, but also for the investigation of the distributions of Paleozoic marine oil and gas in the Tarim Basin. According to the distributions of Paleozoic strata and suface outcrops in the Tarim Block, the Aksu-Keping-Bachu area in the northwestern part of the Tarim Block were selected for Ordovician paleomagnetic studies. A total of 432 drill-core samples form 44 sampling sites were collected and the samples comprise mainly limestones, argillaceous limestones and argillaceous sandstones Based on systematic study of rock magnetism and paleomagnetism, all the samples could be divided into two types: the predominant magnetic minerals of the first type are hematite and subordinate magnetite. For the specimens from this type, characteristic remanent magnetization (ChRM) could generally be isolated by demagnetization temperatures larger than 600℃; we assigned this ChRM as component A; whilst magnetite is the predominant magnetic mineral of the second type; progressive demagnetization yielded another ChRM (component B) with unblocking temperatures of 550-570℃. The component A obtained from the majority of Ordovician specimens has dual polarity and a negative fold test result; we interpreted it as a remagnetization component acquired during the Cenozoic period. The component B can only be isolated from some Middle-Late Ordovician specimens with unique normal polarity, and has a positive fold test result at 95% confidence. The corresponding paleomagnetic pole of this characteristic component is at 40.7°S, 183.3°E with dp/dm = 4.8°/6.9° and is in great difference with the available post-Late Paleozoic paleopoles for the Tarim Block, indicating that the characteristic component B could be primary magnetization acquired in the formation of the rocks. The new Ordovician paleomagnetic result shows that the Tarim Block was located in the low- to intermediate- latitude regions of the Southern Hemisphere during the Middle-Late Ordovician period, and is very likely to situate, together with the South China Block, in the western margin of the Australian-Antarctic continents of East Gondwana. However, it may have experienced a large northward drift and clockwise rotation after the Middle-Late Ordovician period, which resulted in the separation of the Tarim Block from the East Gondwanaland and subsequent crossing of the paleo-equator; by the Late Carboniferous period the Tarim Block may have accreted to the southern margin of the Altaids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, the exploration of fractured reservoir plays a vital role in the further development of petroleum industry through out the world. Fractured hydrocarbon reservoirs are widely distributed in China. Usually, S-wave technique prevails, but it also has its disadvantage, prohibitive expense in S-wave data acquisition and processing. So directly utilizing P-wave data to detect fractures, comes to our mind. We briefly introduce theoretical model (HTI) for fractured reservoir. Then study Ruger’s reflectivity method to recognize reflection P-wave reflection coefficient of the top and bottom interface of HTI layer respectively, and its azimuth anisotropy character. Base on that study, we gives a review and comparison of two seismic exploration technologies for fractures available in the industry-- P-wave AVO and AVA. They has shown great potential for application to the oil and gas prediction of fractured reservoir and the reservoir fine description.Every technique has its disadvantage, AVO limited to small reflection angle; and AVA just offering relatively results. So that, We can draw a conclusion that a better way to any particular field is using synthesis of multiple data sources including core、outcrop、well-test、image logs、3D VSPs, generally to improve the accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the subject of oil and gas exploration, migration is an efficacious technique for imagining structures underground. Wave-equation migration (WEM) dominates over other migration methods in accuracy, despite of higher computational cost. However, the advantages of WEM will emerge as the progress of computer technology. WEM is sensitive to velocity model more than others. Small velocity perturbations result in grate divergence in the image pad. Currently, Kirrchhoff method is still very popular in the exploration industry for the reason of difficult to provide precise velocity model. It is very urgent to figure out a way to migration velocity modeling. This dissertation is mainly devoted to migration velocity analysis method for WEM: 1. In this dissertation, we cataloged wave equation prestack depth migration. The concept of migration is introduced. Then, the analysis is applied to different kinds of extrapolate operator to demonstrate their accuracy and applicability. We derived the DSR and SSR migration method and apply both to 2D model. 2. The output of prestack WEM is in form of common image gathers (CIGs). Angle domain common image gathers (ADCIGs) gained by wave equation are proved to be free of artifacts. They are also the most potential candidates for migration velocity analysis. We discussed how to get ADCIGs by DSR and SSR, and obtained ADCIGs before and after imaging separately. The quality of post stack image is affected by CIGs, only the focused or flattened CIGs generate the correct image. Based on wave equation migration, image could be enhanced by special measures. In this dissertation we use both prestack depth residual migration and time shift imaging condition to improve the image quality. 3. Inaccurate velocities lead to errors of imaging depth and curvature of coherent events in CIGs. The ultimate goal of migration velocity analysis (MVA) is to focus scattered event to correct depth and flatten curving event by updating velocities. The kinematic figures are implicitly presented by focus depth aberration and kinetic figure by amplitude. The initial model of Wave-equation migration velocity analysis (WEMVA) is the output of RMO velocity analysis. For integrity of MVA, we review RMO method in this dissertation. The dissertation discusses the general ideal of RMO velocity analysis for flat and dipping events and the corresponding velocity update formula. Migration velocity analysis is a very time consuming work. Respect to computational convenience, we discus how RMO works for synthetic source record migration. In some extremely situation, RMO method fails. Especially in the areas of poorly illuminated or steep structure, it is very difficult to obtain enough angle information for RMO. WEMVA based on wave extrapolate theory, which successfully overcome the drawback of ray based methods. WEMVA inverses residual velocities with residual images. Based on migration regression, we studied the linearized scattering operator and linearized residual image. The key to WEMVA is the linearized residual image. Residual image obtained by Prestack residual migration, which based on DSR is very inefficient. In this dissertation, we proposed obtaining residual migration by time shift image condition, so that, WEMVA could be implemented by SSR. It evidently reduce the computational cost for this method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractured oil and gas reservoir is an important type of oil and gas reservoir, which is taking a growing part of current oil and gas production in the whole world. Thus these technologies targeted at exploration of fractured oil and gas reservoirs are drawing vast attentions. It is difficult to accurately predict the fracture development orientation and intensity in oil and gas exploration. Focused on this problem, this paper systematically conducted series study of seismic data processing and P-wave attributes fracture detection based on the structure of ZX buried mountain, and obtained good results. This paper firstly stimulated the propagation of P-wave in weak anisotropic media caused by vertical aligned cracks, and analyzed the rule of P-wave attributes’ variation associated with observed azimuth, such as travel-time, amplitude and AVO gradient and so on, and quantitatively described the sensitive degree of these attributes to anisotropy of fracture medium. In order to further study the sensitive degree of these attributes to anisotropy of fractures, meanwhile, this paper stimulated P-wave propagation through different types and different intensity anisotropic medium respectively and summarized the rule of these attributes’ variation associated with observed azimuth in different anisotropic medium. The results of these studies provided reliable references for predicting orientation, extensity and size of actual complicated cracked medium by P-wave azimuth attributes responses. In the paper, amounts of seismic data processing methods are used to keep and recover all kinds of attributes applied for fracture detection, which guarantee the high accurate of these attributes, thus then improve the accurate of fracture detection. During seismic data processing, the paper adopted the three dimensional F-Kx-Ky field cone filter technique to attenuate ground roll waves and multiple waves, then enhances the S/N ratio of pre-stack seismic data; comprehensively applying geometrical spread compensation, surface consistent amplitude compensation, residual amplitude compensation to recover amplitude; common azimuth processing method effectively preserves the azimuthal characteristics of P-wave attributes; the technique of bend ray adaptive aperture pre-stack time migration insures to obtain the best image in each azimuth. Application of these processing methods guaranteed these attributes’ accuracy, and then improved the accuracy of fracture detection. After comparing and analyzing a variety of attributes, relative wave impedance (relative amplitude) attribute is selected to inverse the orientation of fracture medium; attenuation gradient and corresponding frequency of 85% energy are selected to inverse the intensity of fracture medium; then obtained the fracture distribution characteristics of lower Paleozoic and Precambrian in ZX ancient buried mountains. The results are good accord with the characteristics of faults system and well information in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seismic exploration is the main method of seeking oil and gas. With the development of seismic exploration, the target becomes more and more complex, which leads to a higher demand for the accuracy and efficiency in seismic exploration. Fourier finite-difference (FFD) method is one of the most valuable methods in complex structure exploration, which has obtained good effect. However, in complex media with wider angles, the effect of FFD method is not satisfactory. Based on the FFD operator, we extend the two coefficients to be optimized to four coefficients, then optimize them globally using simulated annealing algorithm. Our optimization method select the solution of one-way wave equation as the objective function. Except the velocity contrast, we consider the effects of both frequency and depth interval. The proposed method can improve the angle of FFD method without additional computation time, which can reach 75° in complex media with large lateral velocity contrasts and wider propagation angles. In this thesis, combinating the FFD method and alternative-direction-implicit plus interpolation(ADIPI) method, we obtain 3D FFD with higher accuracy. On the premise of keeping the efficiency of the FFD method, this method not only removes the azimuthal anisotropy but also optimizes the FFD mehod, which is helpful to 3D seismic exploration. We use the multi-parameter global optimization method to optimize the high order term of FFD method. Using lower-order equation to obtain the approximation effect of higher-order equation, not only decreases the computational cost result from higher-order term, but also obviously improves the accuracy of FFD method. We compare the FFD, SAFFD(multi-parameter simulated annealing globally optimized FFD), PFFD, phase-shift method(PS), globally optimized FFD (GOFFD), and higher-order term optimized FFD method. The theoretical analyses and the impulse responses demonstrate that higher-order term optimized FFD method significantly extends the accurate propagation angle of the FFD method, which is useful to complex media with wider propagation angles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The South China Sea (SCS) is one of the largest marginal seas in the western Pacific, which is located at the junction of Eurasian plate, Pacific plate and Indian-Australian plate. It was formed by continent breakup and sea-floor spreading in Cenozoic. The complicated interaction among the three major plates made tectonic movement complex and geological phenomena very rich in this area. The SCS is an ideal place to study the formation and evolution of rifted continental margin and sea-floor spreading since it is old enough to have experienced the major stages of the basin evolution but still young enough to have preserved its original nature. As the demand for energy grows day by day in our country, the deep water region of the northern continental margin in the SCS has become a focus of oil and gas exploration because of its huge hydrocarbon potential. Therefore, to study the rifted continental margin of the SCS not only can improve our understanding of the formation and evolution processes of rifted continental margin, but also can provide theoretical support for hydrocarbon exploration in rifted continental margin. This dissertation mainly includes five topics as follows: (1) Various classic lithosphere stretching models are reviewed, and the continuous non-uniform stretching model is modified to make it suitable for the case where the extension of lithopheric mantle exceeds that of the crust. Then simple/pure shear flexural cantilever model is applied to model the basement geometries of SO49-18 profile in the northern continental margin of the SCS. By fitting the basements obtained by using 2DMove software with modeling results, it is found that the reasonable effective elastic thickness is less than 5km in this region. According to this result, it is assumed that there is weak lower crust in the northern continental margin in the SCS. (2) We research on the methods for stretching factor estimation based on various lithosphere stretching models, and apply the method based on multiple finite rifting model to estimate the stretching factors of several wells and profiles in the northern continental margin of the SCS. (3) We improve one-dimension strain rate inversion method with conjugate gradient method, and apply it to invert the strain rate of several wells in the northern continental margin of the SCS. Two-dimension strain rate forward modeling is carried out, and the modeling results show that effective elastic thickness is a key parameter to control basin’s geometry. (4) We simulate divergent upwelling mantle flow model using finite difference method, and apply this newly developed model to examine the formation mechanism of the northwest and central sub-basin in the SCS. (5) We inverse plate thickness and basal temperature of oceanic lithosphere using sea-floor ages and bathymetries of the North Pacific and the North Atlantic based on varied-parameters plate model, in which the heat conductivity, heat capacity and coefficient of thermal expansion depend on temperature or depth. A new empirical formula is put forward based the inversed parameters, which depicts the relation among sea-floor age, bathymetry and heat flow. Then various similar empirical formulae, including the newly developed one, are applied to examine the sea-floor spread issue in the SCS based on the heat flow and bathymetry data of the abyssal sub-basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the temperature data from 196 wells and thermal conductivity measurements of 90 rock samples, altogether 35 heat flow data are obtained. The results show that the Junggar basin is a relatively "cold basin" at present. The thermal gradients vary between 11.6 and 26.5 ℃/km, and the thermal conductivity change from 0.17 to 3.6 W/mK. Heat flow ranges from 23.4 to 53.7 mW/m~2 with a mean of 42.3 ± 7.7 mW/m~2. The heat flow pattern shows that heat flow is higher on the uplifts and lower on the depressions. The overall low present-day heat flow in the Junggar Basin reflects its stable cratonic basement and Cenozoic tectonothermal evolution characterized by lithospheric thickening, thrust and fault at shallow crust as well as consequently quick subsidence during the Late Cenozoic. The study of the basin thermal history, which is one of the important content of the basin analysis, reveals not only the process of the basin's tectonothermal evolution, but also the thermal evolution of the source rocks based on the hydrocarbon generation models. The latter is very helpful for petroleum exploration. The thermal history of the Junggar basin has been reconstructed through the heat flow based method using the VR and Fission track data. The thermal evolutions of main source rocks (Permian and Jurassic) and the formations of the Permian and the Jurassic petroleum systems as well as the influences of thermal fields to petroleum system also have been discussed in this paper. Thermal history reconstruction derived from vitrinite reflectance data indicates that the Paleozoic formations experienced their maximum paleotemperature during Permian to Triassic with the higher paleoheat flow of around 70-85 mW/m~2 and the basin cooled down to the present low heat flow. The thermal evolution put a quite important effect on the formation and evolution of the petroleum system. The Jurassic petroleum system in the Junggar basin is quite limited in space and the source rocks of Middle-Lower Jurassic entered oli-window only along the foreland region of the North Tianshan belt, where the Jurassic is buried to the depth of 5-7 km. By contrast, the Middle-Lower Permian source rocks have initiated oil and gas generation in latter Permian to Triassic, and the major petroleum systems, like Mahu-West Pen 1 Well, was formed prior to Triassic when later Paleozoic formation reached the maximum paleotemperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the basic geologic conditions, the paper is directed by the modem oil-gas accumulation theory and petroleum system in which typical oil pools are analyzed and the shape of lithologic trap and geologic factors are pointed out. The process during which oil and gas migrate from source rock to lithologic trap is rebuilt, and the accumulation model of oil pool is set up. With the comprehensive application of seismic geologic and log data and paying attention to the method and technology which is used to distinguish lithologic accumulation. Promising structural-lithofacies zones are got and the distribution rule of various lithologic accumulation is concluded. With making use of the biologic mark compound, different reservoirs are compared. As a result, the oil and gas in HeiDimiao come from Nenjiang Group's source rocks; in SaErTu from QingShenkou Group's and Nenjiang Group's, and in PuTaohua. GaoTaizi and FuYang from QingShankou Group's. According to the development and distribution of effective source rock, oil distribution and the comparison in the south of SongLiao basin, the characteristic of basin structure and reservoir distribution is considered, and then the middle-upper reservoir of SongLiao basin south are divided into two petroleum system and a complex petroleum system. Because of the characteristic of migration and accumulation, two petroleum systems can furtherly be divided into 6-7 sub-petroleum systems,20 sub-petroleum systems in all. As a result of the difference of the migration characteristic, accumulation conditions and the place in the petroleum system, the accumulation degree and accumulation model are different. So three accumulation mechanism and six basic accumulation model of lithologic trap are concluded. The distribution of lithologic pools is highly regular oil and gas around the generation sag distribute on favorable structural-lithofacies zones, the type of lithological pool vary regularly from the core of sandstone block to the upper zone. On the basic of regional structure and sedimentary evolution, main factors which control the form of trap are discovered, and it is the critical factor method which is used to discern the lithologic trap. After lots of exploration, 700km~2 potential trap is distinguished and 18391.86 * 10~4 tons geologic reserves is calculated. Oil-water distribution rule of pinch-out oil pool is put up on plane which is the reservoirs can be divided into four sections. This paper presented the law of distribution of oil and water in updip pinch-out reservoir, that is, hydrocarbon-bearing formation in plane can be divided into four zones: bottom edge water zone, underside oil and water zone, middle pure oil zone and above residual water zone. The site of the first well should be assigned to be middle or above pure oil zone, thus the exploration value of this type of reservoir can be recognized correctly. In accordance with the characteristics of seism and geology of low permeability thin sandstone and mudstone alternation layer, the paper applied a set of reservoir prediction technology, that is: (1)seism multi-parameter model identification; (2) using stratum's absorbing and depleting information to predict reservoir's abnormal hydrocarbon-bearing range. With the analysis of the residual resource potential and the research of two petroleum system and the accumulation model, promising objective zones are predicted scientifically. And main exploration aim is the DaRngZi bore in the west of ChangLin basin, and YingTai-SiFangZi middle-upper assembly in Honggang terrace.