扬子地区上奥陶-下志留统黑色岩系形成机理


Autoria(s): 严德天
Contribuinte(s)

王清晨

Data(s)

06/06/2008

Resumo

The black rock series of the Upper Ordovician - Lower Silurian in Yangtze area are important source rocks and have exceptional characteristics of sediment, biology, element geochemistry, carbon and oxygen isotope, organic geochemistry and etc. These characteristics are the reflection of important geology events. Due to scarce system research, many problems that relate to the development mechanism of source rocks are not solved. And this restricts the exploration of Oil and gas in South China. In this paper, author studied the palaeo-climate, palaeo-structure and palaeo-environment of the Upper Ordovician - Lower Silurian in Yangtze area by sedimentology, palaeobiology and geochemistry, especially the element geochemistry and isotope geochemistry. The environment model of source rocks is established and some conclusions are drawn. The Upper Ordovician - Lower Silurian sediment types in Yangtze area are mostly black shales, next, mudstone, shell limestone and siltystone. During the Late Ordovician and Earily Silurian periods, a series of big upheaval and depressed are distributed in Yangtze area, and the strata pattern of interphase upheaval and depressed led to Yangtze palaeosea isolated with outside sea. So the stagnant and anoxic environment that are the favorable factor of rich organic black shales sediment is formed in Yangtze area. That Chemical Index of Alteration (CIA) values of the lower Wufeng formation and Longmaxi formation exhibits moderate chemistry weathering suggests they were deposited under the circumstances of the warm and humid climate. However, the large difference of the CIA values of N.extraordinarius-N.ojsuensis biozone suggests that climate is changeful. Therefore, there were two different kinds of climates in the course of the deposition of the Wufeng formation and Longmaxi formation. During the Late Ordovician - Earily Silurian periods, in Yangtze palaeosea, the surface water which is full of rich nutriment and abundant bacterium - algae has high palaeo-productivity that is obvious difference in the different space – time. The content of sulphate changes gradually from the surface water columns to the deep water columns. That is, salinity in the surface water columns is serious low and the salinity in deep water columns is normal. Salinity delamination is favor of the forming of deep anoxic environment. During Wufeng period, the oxidated and low sulfate environment exists in the upper Yangtze palaeosea, while the anoxic and normal salinity environment occurs in the lower Yangtze palaeosea. During the Late Wufeng and Guanyinqiao periods, the steady anoxic environment is replaced by oxidated environment. During the Longmaxi period, layered and anoxic environment recur. In Yangtze area, studies of δ13C of sedimentary organic carbon show a positive δ13C excursion up to 4‰ in the Guanyinqiao stage and then, acute negative excursion in the earily Longmaxi stage. These organic carbon isotopes curve are not only efficient measure of carving up strata borderline, but also reflected the change of originality productivity. These organic carbon isotopes curves showed the process of the enhanced embedding of the global organic carbon. Anoxic event is the main factor of increasing organic carbon embedding speed. And the reduced organic carbon embedding in Hirnantian stage is due to the water column with abundant oxygen. The δ34S values are gradually positive excursion from P.pacificus biozone to N.extraordinarius biozone, and reach the maximum in the Upper Hirnantian stage. Then, the δ34S values are negative excursion. The excursions of δ13C and δ34S reflect the acute change of environment. The formation of source rocks is largely dependent on the nature of organisms from which kerogen is derived and the preservation conditions of organic matter, which are fundamentally dependent on a favourable combination of various elements in which organisms live and are subsequently buried. These elements include palaeoclimate, palaeostructure and palaeoenvironmental conditions. Based on above mentioned circumstance, the coupling connection of source rock and the palaeoclimate, and of palaeostructure and palaeoenvironmental conditions are confirmed, and the “anoxic-marginal depression-photosynthesis” environemental model is established. It is indicated that anoxic played important role in production of organic matter. The produced organic matter was accumulated in marginal depression of the Yangtze area. The photosynthesis is favor of the high productivity. Source rocks have a good perspective, like that of “hot shale” deposited in North Africa.

Identificador

http://159.226.119.211/handle/311031/1384

http://www.irgrid.ac.cn/handle/1471x/174328

Idioma(s)

中文

Fonte

扬子地区上奥陶-下志留统黑色岩系形成机理.严德天[d].中国科学院地质与地球物理研究所,2008.20-25

Palavras-Chave #黑色岩系 #沉积学 #元素地球化学 #同位素地球化学 #上奥陶-下志留统 #扬子地区
Tipo

学位论文