114 resultados para Natural antioxidant
Crucial Role of Antioxidant Proteins and Hydrolytic Enzymes in Pathogenicity of Penicillium expansum
Flavonoid Composition and Antioxidant Activity of Tree Peony (Paeonia Section Moutan) Yellow Flowers
Resumo:
Ticks are blood-feeding arthropods that may secrete immunosuppressant molecules, which inhibit host inflammatory and immune responses and provide survival advantages to pathogens at tick bleeding sites in hosts. In the current work, two families of immunoregulatory peptides, hyalomin-A and -B, were first identified from salivary glands of hard tick Hyalomma asiaticum asiaticum. Three copies of hyalomin-A are encoded by an identical gene and released from the same protein precursor. Both hyalomin-A and -B can exert significant anti-inflammatory functions, either by directly inhibiting host secretion of inflammatory factors such as tumor necrosis factor-alpha, monocyte chemotectic protein-1, and interferon-gamma or by indirectly increasing the secretion of immunosuppressant cytokine of interleukin-10. Hyalomin-A and -B were both found to potently scavenge free radical in vitro in a rapid manner and inhibited adjuvant-induced inflammation in mouse models in vivo. The JNK/SAPK subgroup of the MAPK signaling pathway was involved in such immunoregulatory functions of hyalomin-A and -B. These results showed that immunoregulatory peptides of tick salivary glands suppress host inflammatory response by modulating cytokine secretion and detoxifying reactive oxygen species.
Resumo:
The question of how amphibians can protect themselves from reactive oxygen species when exposed to the sun in an oxygen-rich atmosphere is important and interesting, not only from an evolutionary viewpoint, but also as a primer for researchers interested in mammalian skin biology, in which such peptide systems for antioxidant defense are not well studied. The identification of an antioxidant peptide named antioxidin-RL from frog (Odorrana livida) skin in this report supports the idea that a peptide antioxidant system may be a widespread antioxidant strategy among amphibian skins. Its ability to eliminate most of the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical tested within 2 s, which is much faster than the commercial antioxidant factor butylated hydroxytoluene, suggests that it has a potentially large impact on redox homeostasis in amphibian skins. Cys10 is proven to be responsible for its rapid radical scavenging function and tyrosines take part in the binding of antioxidin-RL to radicals according to our nuclear magnetic resonance assay. (C) 2010 Elsevier Inc. All rights reserved.