195 resultados para NEUTRON BEAMS
Effects of shock waves on spatial distribution of proton beams in ultrashort laser-foil interactions
Resumo:
The characteristics of proton beam generated in the interaction of an ultrashort laser pulse with a large prepulse with solid foils are experimentally investigated. It is found that the proton beam emitted from the rear surface is not well collimated, and a "ring-like" structure with some "burst-like" angular modulation is presented in the spatial distribution. The divergence of the proton beam reduces significantly when the laser intensity is decreased. The "burst-like" modulation gradually fades out for the thicker target. It is believed that the large divergence angle and the modulated ring structure are caused by the shock wave induced by the large laser prepulse. A one-dimensional hydrodynamic code, MED103, is used to simulate the behavior of the shock wave produced by the prepulse. The simulation indicates that the rear surface of the foil target is significantly modified by the shock wave, consequently resulting in the experimental observations. (c) 2006 American Institute of Physics.
Resumo:
It is predicted that large and opposite generalized Goos-Hanchen (GGH) shifts may occur simultaneously for TE and TM light beams upon reflection from an asymmetric double-prism configuration when the angle of incidence is below but near the critical angle for total reflection, which may lead to interesting applications in optical devices and integrated optics. Numerical simulations show that the magnitude of the GGH shift can be of the order of beam's width.
Resumo:
A new method of tailoring stimulated Brillouin scattering (SBS) gain spectrum for slow light propagation is proposed by use of two Gaussian-shaped broadband pump beams with different powers and spectral widths. The central frequency interval between the two pump beams are carefully set to be two inherent Brillouin frequency shift, ensuring that the gain spectrum of one pump has the same central frequency with the loss spectrum of the other one. Different gain profiles are obtained and analyzed. Among them a special gain profile is found that ensures a zero-broadening of the signal pulse independent of the Brillouin gain. This is owing to the compensation between the positive gain-dependent broadening and the negative GVD (group velocity dispersion) dependent broadening. The relationship of two pump beams is also found for constructing such a gain profile. It provides us a new idea of managing the broadening of SBS-based slow pulse by artificially constructing and optimizing the profile of gain spectrum. (c) 2008 Optical Society of America.
Resumo:
Photoinduced anisotropy in bacteriorhodopsin (BR) film arises from the selective bleaching of BR molecules to linearly polarized light. The kinetics of photoinduced anisotropy excited by single and two pumping beams are investigated theoretically and experimentally. Compared with a single pumping beam (650 nm), which produces comparatively small photoinduced anisotropy, dual-wavelength linearly polarized pumping beams (650 and 405 nm) can obviously change the photoinduced anisotropy. When the polarization orientation of the 405 ran pumping beam is perpendicular to that of the 650 nm pumping beam, the peak and steady values of the photoinduced anisotropy kinetic curves are remarkably enhanced. But when the two pumping beams have parallel polarization orientation, the peak and steady values are restrained. At a fixed intensity of the 650 nm pumping beam, there exists an optimal intensity for the 405 nm pumping beam to maximize the value of the photoinduced anisotropy. The photoinduced transmittance of the polarizer-BR-analyzer system is modulated by the polarization angle of the 405 nm pumping beam in an approximate-cosine form. (C) 2008 Optical Society of America.
Resumo:
Neutron irradiated high resistivity (4-6 kOMEGA-cm) silicon detectors in the neutron fluence (PHI(n)) range of 5 X 10(11) n/cm2 to 1 X 10(14) n/cm2 have been studied using a laser deep level transient spectroscopy (L-DLTS). It has been found that the A-center (oxygen-vacancy, E(c) = 0.17 eV) concentration increases with neutron fluence, reaching a maximum at PHI(n) almost-equal-to 5 X 10(12) n/cm2 before decreasing with PHI(n). A broad peak has been found between 200 K and 300 K, which is the result of the overlap of three single levels: the V-V- (E(c) = 0.38 eV), the E-center (P-V, E(c) = 0.44 eV), and a level at E(c) = 0.56 eV that is probably V-V0. At low neutron fluences (PHI(n) < 5 X 10(12) n/cm2), this broad peak is dominated by V-V- and the E-centers. However, as the fluence increases (PHI(n) greater-than-or-equal-to 5 X 10(12) n/cm2), the peak becomes dominated by the level of E(c) = 0.56 eV.
Resumo:
Neutron-irradiated high-resistivity silicon detectors have been subjected to elevated temperature annealing (ETA). It has been found that both detector full depletion voltage and leakage current exhibit abnormal annealing (or ''reverse annealing'') behaviour for highly irradiated detectors: increase with ETA. Laser induced current measurements indicate a net increase of acceptor type space charges associated with the full depletion voltage increase after ETA. Current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC) data show that the dominant effect is the increase of a level at 0.39 eV below the conduction band (E(c) - 0.39 eV) or a level above the valence band (E(v) + 0.39 eV). Candidates tentatively identified for this level are the singly charged double vacancy (V-V-) level at E(c) - 0.39 eV, the carbon interstitial-oxygen interstitial (C-i-O-i) level at E(v) + 0.36 eV, and/or the tri-vacancy-oxygen center (V3O) at E(v) + 0.40 eV.