86 resultados para NEGATIVE THERMAL-EXPANSION
Resumo:
Nd2CexO3+2x (x = 2.25, 2.5, 2.75, 3.0) were synthesized by solid-state reaction, and their phase stabilities and thermophysical properties were investigated. The X-ray diffraction (XRD) results indicated that Nd2CexO3+2x with fluorite structure were stable after long-term annealing at 1673 K. They have higher thermal expansion coefficients (TECs) than yttria-stabilized zirconia (YSZ) which is the typical thermal barrier coating (TBC) material, especially the thermal expansion as a function of temperature is parallel to that of the nickel-based superalloy.
Resumo:
Thermal barrier coatings (TBCs) of La2Zr2O7 (LZ) with the addition of 3 wt.% Y2O3 (LZ3Y) were deposited by electron beam-physical vapor deposition (EB-PVD). The phase stabilities, thermophysical and mechanical properties, and chemical compositions of these ceramics and coatings were studied in detail. The phase stability and thermal expansion behavior of LZ3Y bulk material are identical to those of LZ bulk material, but the mechanical properties of the former are superior to those of the latter. Elemental analysis and X-ray diffraction indicate that compositional deviation of LZ coating can be optimized after doping by 3 wt.% Y2O3, Y2O3 acts as a dopant as well as a process regulator. The optimal composition of LZ3Y coating could be effectively achieved by the addition of excess Y2O3 into the ingot and by properly controlling the current of electron beam (i.e. similar to 650 mA).
Resumo:
New asymmetrical aromatic dichlorophthalimide monomers containing pendant groups (trifluoromethyl or methyl) were conveniently prepared from inexpensive and commercially available compounds. With these monomers, a new class of soluble polyimides with a regioirregular structure within the polymer backbone was obtained by the Ni(0)-catalyzed polymerization method. The structures of the polymers were confirmed by various spectroscopic techniques. The polyimides displayed better solubility and higher thermal stability than the corresponding regular polyimides. In addition, fluorinated polyimides in this study had low dielectric constants ranging from 2.52 to 2.78, low moisture absorptions of less than 0.59%, and low thermal expansion coefficients between 10.6 and 19.7 ppm/degrees C. The oxygen permeability coefficients and permeability selectivity of oxygen to nitrogen of the films were in the ranges of 2.99-4.20 barrer and 5.55-7.50, respectively. We have demonstrated that the synthetic pathway for polyimides provides a successful approach to increasing the solubility and processability of polyimides without sacrificing their thermal stability.
Resumo:
The relation between the lattice energies and the bulk moduli on binary inorganic crystals was studied, and the concept of lattice energy density is introduced. We find that the lattice energy densities are in good linear relation with the bulk moduli in the same type of crystals, the slopes of fitting lines for various types of crystals are related to the valence and coordination number of cations of crystals, and the empirical expression of calculated slope is obtained. From crystal structure, the calculated results are in very good agreement with the experimental values. At the same time, by means of the dielectric theory of the chemical bond and the calculating method of the lattice energy of complex crystals, the estimative method of the bulk modulus of complex crystals was established reasonably, and the calculated results are in very good agreement with the experimental values.
Resumo:
In this work, both the thermal expansion and electrical conductivity of nanocrystalline La2Mo2O9 were studied. The nanocrystalline powder of La2Mo2O9 was obtained by sol-gel method, and with the help of SHP (superhigh pressure) up to 4.5 x 10(4) atm at 700 degrees C for a short time, and the nanocrystalline powder was densified without obvious particle size growth. The electrical conductivity of nanocrystalline La2Mo2O9 was one order of magnitude lower than that of the microcrystalline sample at the same temperature. Owing to the phase transition, the microcrystalline La2MO2O9 has an abrupt increase of thermal expansion with a peak value of 48 x 10(-6) K-1 at 556 degrees C. For the nanocrystalline material, the peak value increases to 112 x 10(-6) K-1 at 520 degrees C. On the other hand, above 600 degrees C the significant growth of particle size of the nanocrystalline La2Mo2O9 was observed, accompanying by a tremendous increase of thermal expansion with a peak value of 1565 x 10(-6) K-1 at 620 degrees C. The electrical conductivity of La1.6Nd0.4Mo2O9 at 800 degrees C is 0.14 S center dot cm(-1) which is about one third higher than that of La2Mo2O9.
Resumo:
An aromatic polyimide was synthesized via a one-step polycondensation reaction between biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-oxydianiline (ODA) in p-chlorophenol. The polyimide (BPDA-ODA) solution dopes were spun into fibers by means of dry-jet wet spinning. The as-spun fibers were drawn and treated in heating tubes for improving the mechanical properties. The thermal treatment on the fibers resulted in a relatively high tensile strength and modulus. Thermal mechanical analysis (TMA) was employed to study the linear coefficient of thermal expansion (CTE). Thermal gravimetry analysis (TGA) spectra showed that the BPDA-ODA fibers possessed an excellent property of thermo-oxidative degradation resistance. The sonic modulus E-s of the polyimide fibers was measured.
Resumo:
The PVT data of five kinds of biaxially oriented polypropylene (BOPP) Resins was measured by the PVT-100 apparatus. Thermal expansion coefficients (alpha) and isothermal compressibility (beta) were evaluated from Tait equation in the melting state and then compared with those fitted with the value of experiment. The results showed that it was reasonable to calculate alpha and beta with Tait equation in the melting state. At the same time, it was found that thermal expansion coefficients, isothermal compressibility and the melting temperature (T-m) of one of BOPP melts (S28C) were lower than those of the others in the same test conditions, indicating that the volume deformation of S28C resin is' less so that it could be realized to avoid arising surface defects of the film (biaxially oriented polypropylene film) due to. contracting, thereby decrease damage to the film in the subsequence process. Accordingly superior processing properties of S28C resin are confirmed from PVT. speciality.
Resumo:
A series of solid electrolytes Ce1-xGdxO2-x/2(x=0 similar to0.6) was prepared by sol-gel method. The structure, thermal expansion coefficient and electrical properties of the solid solutions were systematically studied. XRD data showed that a complete cubic fluorite structure was formed at 160 degreesC. The purity of the product prepared by the sol-gel method is higher, the grain size is uniformly smaller. They were easily sintered into highly dense ceramic pellets at 1 300 degreesC. The sintering temperature was significantly lower than that by traditionally high temperature solid phase reaction method. The thermal expansion coefficient of Ce0.8Gd0.2O1.9, determined from high- temperature XRD data, is 8. 125 X 10(-6) K-1. Impedance spectra analyses showed that the grain-boundary resistance of the solid electrolyte prepared by sol-gel method was reduced or even eliminated. The conductivity of Ce0.8Gd0.2O1.9 is 5.26 X 10(-3) S/cm at 600 degreesC. The activation energy (E-a) is 0.82 eV.
Resumo:
The variation of lattice spacings of poly(iminosebacoyl iminodecamethylene) (nylon-10,10) with temperature was studied by wide-angle X-ray diffraction (WAXD) during both heating and cooling processes, which demonstrates a gradual and continuous transition with temperature. However, the crystal melts before the two peaks merge completely. Both WAXD and differential scanning calorimetry show that crystallization from molten sample results directly in the triclinic form. Additionally, this transition is thermodynamically reversible. Comparison of this transition with that of nylon-6,6, suggests that no hydrogen-bonded network is formed during or after the transition. We prefer to attribute this transition to asymmetrical thermal expansion in the nylon-10,10 crystals rather than to a true first-order phase transition. (C) 2001 Society of Chemical Industry.
Resumo:
A statistical thermodynamics theory of polydisperse polymers based on a lattice model of fluids is formulated. Pure polydisperse polymer can be completely characterized by three scale factors and the molecular weight distribution of the system. The equation of state does not satisfy a simple corresponding-states principle, except for a polymer fluid of sufficiently high molecular weight. The relationships between thermal expansion coefficient alpha and isothermal compressibility beta with reduced variables are also predicted.
Resumo:
A major problem which is envisaged in the course of man-made climate change is sea-level rise. The global aspect of the thermal expansion of the sea water likely is reasonably well simulated by present day climate models; the variation of sea level, due to variations of the regional atmospheric forcing and of the large-scale oceanic circulation, is not adequately simulated by a global climate model because of insufficient spatial resolution. A method to infer the coastal aspects of sea level change is to use a statistical ''downscaling'' strategy: a linear statistical model is built upon a multi-year data set of local sea level data and of large-scale oceanic and/or atmospheric data such as sea-surface temperature or sea-level air-pressure. We apply this idea to sea level along the Japanese coast. The sea level is related to regional and North Pacific sea-surface temperature and sea-level air pressure. Two relevant processes are identified. One process is the local wind set-up of water due to regional low-frequency wind anomalies; the other is a planetary scale atmosphere-ocean interaction which takes place in the eastern North Pacific.
Resumo:
The South China Sea (SCS) is one of the largest marginal seas in the western Pacific, which is located at the junction of Eurasian plate, Pacific plate and Indian-Australian plate. It was formed by continent breakup and sea-floor spreading in Cenozoic. The complicated interaction among the three major plates made tectonic movement complex and geological phenomena very rich in this area. The SCS is an ideal place to study the formation and evolution of rifted continental margin and sea-floor spreading since it is old enough to have experienced the major stages of the basin evolution but still young enough to have preserved its original nature. As the demand for energy grows day by day in our country, the deep water region of the northern continental margin in the SCS has become a focus of oil and gas exploration because of its huge hydrocarbon potential. Therefore, to study the rifted continental margin of the SCS not only can improve our understanding of the formation and evolution processes of rifted continental margin, but also can provide theoretical support for hydrocarbon exploration in rifted continental margin. This dissertation mainly includes five topics as follows: (1) Various classic lithosphere stretching models are reviewed, and the continuous non-uniform stretching model is modified to make it suitable for the case where the extension of lithopheric mantle exceeds that of the crust. Then simple/pure shear flexural cantilever model is applied to model the basement geometries of SO49-18 profile in the northern continental margin of the SCS. By fitting the basements obtained by using 2DMove software with modeling results, it is found that the reasonable effective elastic thickness is less than 5km in this region. According to this result, it is assumed that there is weak lower crust in the northern continental margin in the SCS. (2) We research on the methods for stretching factor estimation based on various lithosphere stretching models, and apply the method based on multiple finite rifting model to estimate the stretching factors of several wells and profiles in the northern continental margin of the SCS. (3) We improve one-dimension strain rate inversion method with conjugate gradient method, and apply it to invert the strain rate of several wells in the northern continental margin of the SCS. Two-dimension strain rate forward modeling is carried out, and the modeling results show that effective elastic thickness is a key parameter to control basin’s geometry. (4) We simulate divergent upwelling mantle flow model using finite difference method, and apply this newly developed model to examine the formation mechanism of the northwest and central sub-basin in the SCS. (5) We inverse plate thickness and basal temperature of oceanic lithosphere using sea-floor ages and bathymetries of the North Pacific and the North Atlantic based on varied-parameters plate model, in which the heat conductivity, heat capacity and coefficient of thermal expansion depend on temperature or depth. A new empirical formula is put forward based the inversed parameters, which depicts the relation among sea-floor age, bathymetry and heat flow. Then various similar empirical formulae, including the newly developed one, are applied to examine the sea-floor spread issue in the SCS based on the heat flow and bathymetry data of the abyssal sub-basin.
Resumo:
Micro-cracks appeared between the boundaries of different minerals of rocks during heating process, because of different thermal expansion coefficients of minerals, this phenomenon is referred as thermal cracking of rocks. The transport property of rocks was changed greatly due to the thermal cracking induced micro-cracks network, for example, the permeability of carbonate increases about 10 times when the temperature arise from room temperature to 110~120℃. Thermal cracking of rocks is a new research field of rock physics, which related closely to rock mechanics, mineralogy as well as experimental technology. The thermal cracking experiments of various rocks were performed, the rock macroscopic properties such as porosity, permeability, velocities of elastic waves in rocks were obtained as a function of temperature of heating process, and the microscopic structures of rocks were observed by using Scanning Electro-Microscope (SEM). The mechanism and the theoretical model of thermal cracking of rocks are given at present paper. Finally, the potential implication of rock thermal cracking to petroleum industry is discussed.
Resumo:
Phase structure and stability of three typical mixed ionic and electronic conducting perovskite-type membranes, SrCo0.8Fe0.2O3-delta (SCF), Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) and BaCo0.4Fe0.4Zr0.2O3-delta (BCFZ) were studied by in situ high temperature X-ray diffraction at temperatures from 303 to 1273 K and under different atmospheres (air, 2% O-2 in Ar and pure Ar) at 1173 K. By analyzing their lattice parameters the thermal expansion coefficients (TECs) of BSCF, SCF and BCZF are obtained to be 11.5 x 10(-6) K-1, 17.9 x 10(-6) K-1 and 10.3 x 10(-6) K-1, respectively. A relationship between phase stability and TEC was proposed: the higher is the TEC, the lower is the operation stability of the perovskite materials. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
An eigenfunction expansion-variational method based on a unit cell is developed to deal with the steady-state heat conduction problem of doubly-periodic fiber reinforced composites with interfacial thermal contact resistance or coating. The numerical results show a rapid convergence of the present method. The present solution provides a unified first-order approximation formula of the effective thermal conductivity for different interfacial characteristics and fiber distributions. A comparison with the present high-order results, available experimental data and micromechanical estimations demonstrates that the first-order approximation formula is a good engineering closed-form formula. An engineering equivalent parameter reflecting the overall influence of the thermal conductivities of the matrix and fibers and the interfacial characteristic on the effective thermal conductivity, is found. The equivalent parameter can greatly simplify the complicated relation of the effective thermal conductivity to the internal structure of a composite. (c) 2010 Elsevier Ltd. All rights reserved.