526 resultados para Metalorganic Chemical Vapor Deposition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron-doped ( B-doped) silicon nanowires have been successfully synthesized by plasma-enhanced chemical vapor deposition (PECVD) at 440degreesC using silane as the Si source, diborane( B2H6) as the dopant gas and An as the catalyst. It is desirable to extend this technique to the growth of silicon nanowire pn junctions because PECVD enables immense chemical reactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GaN film was grown on the (111) silicon-on-insulator (SOI) substrate by metal-organic chemical vapor deposition and then annealed in the deposition chamber. A multiple beam optical stress sensor was used for the in-situ stress measurement, and X-ray diffraction (XRD) and Raman spectroscopy were used for the characterization of GaN film. Comparing the characterization results of the GaN films on the bulk silicon and SOI substrates, we can see that the Raman spectra show the 3.0 cm(-1) frequency shift of E-2(TO), and the full width at half maximum of XRD rocking curves for GaN (0002) decrease from 954 arc see to 472 are sec. The results show that the SOI substrates can reduce the tensile stress in the GaN film and improve the crystalline quality. The annealing process is helpful for the stress reduction of the GaN film. The SOI substrate with the thin top silicon film is more effective than the thick top silicon film SOI substrate for the stress reduction. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GaN epilayers have been deposited on silicon-on-insulator (SOI) and bulk silicon substrates. The stress transition thickness and the initial compressive stress of a GaN epilayer on the SOI substrate are larger than those on the bulk silicon substrate, as shown in in situ stress measurement results. It is mainly due to the difference of the three-dimensional island density and the threading dislocation density in the GaN layer. It can increase the compressive stress in the initial stage of growth of the GaN layer, and helps to offset the tensile stress generated by the lattice mismatch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-Al-content AlGaN epilayer is grown on a low-temperature-deposited AlN buffer on (0001) sapphire by low pressure metalorganic chemical vapour deposition. The dependence of surface roughness, tilted mosaicity, and twisted mosaicity on the conditions of the AlGaN epilayer deposition is evaluated. An AlGaN epilayer with favourable surface morphology and crystal quality is deposited on a 20 nm low-temperature-deposited AlN buffer at a low V/III flow ratio of 783 and at a low reactor pressure of 100 Torr, and the adduct reaction between trimethylaluminium and NH3 is considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single crystalline ternary ZnxCd1-xS nanocombs, which have 'comb' shaped' teeth on one side, have been synthesized by a one-step metallo-organic chemical vapor deposition process at a low temperature of 420 degrees C. The asymmetric, growth behavior of the nanocombs is likely to be induced by the polarization of the c-ptane. Because of the uniform structure and perfect geometrical shape, the nanoteeth could be potentially useful as nanocantilever arrays for nanosensors and, nanotweezers. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural property of InN films grown on Ga-face GaN layers by metal-organic chemical vapor deposition has been studied by high-resolution x-ray diffraction. The mosaic tilt and twist are found to be strongly dependent on the surface lateral grain size. The twist decreases with increasing grain size and finally approaches to a constant level. On the other hand, the mosaic tilt increases substantially when the grain size becomes large enough and exceeds the width of step terraces on the GaN surface, showing an important mechanism for the defect generation in the InN/GaN system with large out-of-plane lattice mismatch. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hexangular indium nitride nanoflower pattern is observed from scanning electron microscopy and atomic force microscopy. The sample is grown on c-plane (0001) sapphire by metal organic chemical vapor deposition with intentional introduction of hydrogen gas. With the aid of hydrogen, a stable existence of metallic indium is achieved. This will induce the growth of InN nanoflowers via self-catalysis vapor-liquid-solid (VLS) process. It is found that the VLS process is modulated by the interface kinetics and thermodynamics among the sapphire substrate, indium, and InN, which leads to the special morphology of the authors' InN nanoflower pattern. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetophotoluminescence properties of Zn0.88Mn0.12Se thin films grown by metal-organic chemical vapor deposition on GaAs substrates are investigated in fields up to 10 T. The linewidth of the excitonic luminescence peaks decreases with the increasing magnetic field (< 1 T), but the peak energy is almost unchanged. There is a crossover of the photoluminescence intensities between interband and bound excitonic transitions as the magnetic field is increased to about 1 T. These behaviors are interpreted by the strong tuning of the local alloy disorder potential by the applied magnetic field. In addition, the magnetic field-induced suppression of the energy transfers from excitons to Mn2+ ions is also observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline silicon thin films were prepared by hot-wire chemical vapor deposition ( HWCVD) on glass at 250 degreesC with W or Ta wire as the catalyzers. The structual and optoelectronic properties as functions of the filament temperature, deposition pressure and the filament-substrate distance were studied, and the optimized polycrystalline silicon thin films were obtained with X-c > 90 % ( X-c denotes the crystalline ratio of the film), crystal grain size about 30-40nm, R-d approximate to 0.8nm/s, sigma(d) about 10(-7) - 10(-6) Omega(-1) cm(-1), Ea(a) approximate to 0.5eV and E-opt less than or equal to 1.3eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline diamond films were grown by a two-step process on Si(1 0 0) substrate, which was first pretreated by pure carbon ions bombardment. The bombarded Si substrate was then transformed into a hot-filament chemical vapor deposition (HFCVD) system for further growth. Using the usual CH4/H-3 feed gas ratio for micro crystalline diamond growth, nanodiamond crystallites were obtained. The diamond nucleation density is comparable to that obtained by biasing the substrate. The uniformly distributed lattice damage is proposed to be responsible for the formation of the nanodiamond. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new alternative method to grow the relaxed Ge0.24Si0.76 layer with a reduced dislocation density by ultrahigh vacuum chemical vapor deposition is reported in this paper. A 1000-Angstrom Ge0.24Si0.76 layer was first grown on a Si(100) substrate. Then a 500-Angstrom Si layer and a subsequent 5000-Angstrom Ge0.24Si0.76 overlayer followed. All these three layers were grown at 600 degrees C. After being removed from the growth system to air, the sample was first annealed at 850 degrees C for 30 min, and then was investigated by cross-sectional transmission electron microscopy and Rutherford backscattering spectroscopy. It is shown that the 5000-Angstrom Ge0.24Si0.76 thick over layer is perfect, and most of the threading dislocations are located in the embedded thin Si layer and the lower 1000-Angstrom Ge0.24Si0.76 layer. The relaxation ratio of the over layer is deduced to be 0.8 from Raman spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The micro-Raman spectroscopy and infrared (IR) spectroscopy have been performed for the study of the microstructure of amorphous hydrogenated oxidized silicon (alpha-SiOx,:H) films prepared by Plasma Enhanced Chemical Vapor Deposition technique. It is found that a-SiOx:H consists of two phases: an amorphous silicon-rich phase and an oxygen-rich phase mainly comprised of HSi-SiO2 and HSi-O-3. The Raman scattering; results exhibit that the frequency of TO-like mode of amorphous silicon red-shifts with decreasing size of silicon-rich region. This is related to the quantum confinement effects, similar to the nanocrystalline silicon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undoped hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared at low temperature by hot wire chemical vapor deposition (HWCVD). Microstructures of the mu c-Si:H films with different H-2/SiH4 ratios and deposition pressures have been characterized by infrared spectroscopy X-ray diffraction (XRD), Raman scattering, Fourier transform (FTIR), cross-sectional transmission electron microscopy (TEM) and small angle X-ray scattering (SAX). The crystallization of silicon thin film was enhanced by hydrogen dilution and deposition pressure. The TEM result shows the columnar growth of mu c-Si:H thin films. An initial microcrystalline Si layer on the glass substrate, instead of the amorphous layer commonly observed in plasma enhanced chemical vapor deposition (PECVD), was observed from TEM and backside incident Raman spectra. The SAXS data indicate an enhancement of the mass density of mu c-Si:H films by hydrogen dilution. Finally, combining the FTIR data with the SAXS experiment suggests that the Si--H bonds in mu c-Si:H and in polycrystalline Si thin films are located at the grain boundaries. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid composites composed of zinc phthalocyanine embedded in silicon matrixes have attracted attention because of the potential for solar energy conversion. We produce hybrid composites by thermal evaporation for the plithalocyanine and PECVD (Plasma Enhanced Chemical Vapor Deposition) for the silicon matrix. Deposition of ZnPc/a-Si(amorphous silicon) composites was achieved in a sequential manner. The compound films were characterized by optical transmittance spectra and photoconductivity measurement. The optical transmittance measurements were carried out in the visible region (500 - 800 nm). Compared to pure silicon film, the photosensitivity of compound functional films was enhanced by one order of magnitude. This demonstrates the Si sensitized by adding ZnPc.