105 resultados para MANGANESE PEROXIDASE
Resumo:
A novel third-generation hydrogen peroxide (H2O2) biosensor was developed by immobilizing horseradish peroxidase (HRP) on a biocompatible gold electrode modified with a well-ordered, self-assembled DNA film. Cysteamine was first self-assembled on a gold electrode to provide an interface for the assembly of DNA molecules. Then DNA was chemisorbed onto the self-assembled monolayers (SAMs) of cysteamine to form a network by controlling DNA concentration. The DNA-network film obtained provided a biocompatible microenvironment for enzyme molecules, greatly amplified the coverage of HRP molecules on the electrode surface, and most importantly could act as a charge carrier which facilitated the electron transfer between HRP and the electrode. Finally, HRP was adsorbed on the DNA-network film. The process of the biosensor construction was followed by atomic force microscopy (AFM). Voltammetric and time-based amperometric techniques were employed to characterize the properties of the biosensor derived. The enzyme electrode achieved 95% of the steady-state current within 2 s and had a 0.5 mu mol l(-1) detection limit of H2O2. Furthermore, the biosensor showed high sensitivity, good reproducibility, and excellent long-term stability.
Resumo:
A solid catalyst manganese pyrophosphate based on non-sieves to oxidize benzene to phenol with oxidant hydrogen peroxide has shown good conversion with good selectivity in CH3CN at 65 degrees C investigating water contact angle data of three manganese salts, it is found manganese pyrophosphate has certain repulsive water character. It is further to be confirmed by benzene and phenol adsorption experiments onto catalyst surface by GC. With benzene/H2O2 ratio of 1, the benzene conversion of 13.8% with phenol selectivity of 85.0% was achieved. It is noteworthy that no any products are obtained using manganese pyrophosphate as catalyst in the oxidation of phenol in CH3CN solvent.
Resumo:
A novel mimic TeHA was synthesized by modifying hyaluronic acid (HA) with tellurium, whose function is similar to that of glutathione peroxidase (GPX). The structure of TeHA was characterized by means of infrared spectroscopy and nuclear magnetic resonance spectroscopy, showing that the target Te is located at -CH2OH of the N-acetyl-D-glucosamine of HA. The activity of TeHA is 163.6 U/mu mol according to Wilson's method. In contrast to other mimics, TeHA displays a high activity. Moreover, TeHA can use many hydroperoxides as substrates, such as H2O2, cumenyl hydroperoxide, and tert-butyl hydroperoxide, and cumenyl hydroperoxide is the optimal substrate. A ping-pong mechanism was deduced for the reduction reactions catalyzed by TeHA according to the steady-state kinetic studies.
Resumo:
The title compound, {[Mn-2(CH3CO2)(4)(C10H8N2)(2)](H2O)-H-.}(n), is a one-dimensional coordination polymer with a ladder-like structure. Two Mn-II atoms, each coordinated by a chelating acetate ligand, are bridged by two bidentate acetate ligands to form a centrosymmetric [Mn-2(CH3CO2)(4)] unit. Two 4,4'-bipyridine ligands link the [Mn-2(CH3CO2)(4)] units through Mn-N bonds to generate a molecular ladder. The water O atom lies on a crystallographic twofold rotation axis.
Resumo:
A novel mimic was synthesized by modifying hyaluronic acid (HA) with tellurium, whose function is similar to that of glutathione peroxidase (GPX). The structure of TeHA was characterized by means of IR and NMR, the target-Te was located at -CH2OH of the N-acetyl-D-glucosamine of HA. The H2O2 reducing activity of TeHA, by glutathione (GSH), was 163.6 U/mu mol according to Wilson's method. In contrast to other mimics, TeHA displayed the highest activity. Moreover, TeHA accepted many hydroperoxides as its substrates, such as H2O2, cumenyl hydroperoxide (CuOOH) and tert-butyl hydroperoxide (t-BuOOH), and CuOOH was the optimal substrate of TeHA. A ping-pong mechanism was observed in the steady-state kinetic studies of the reactions catalyzed by TeHA.
Resumo:
Stable films of didodecyldimethylammonium bromide (DDAB, a synthetic lipid) and horseradish peroxidase (HRP) were made by casting the mixture of the aqueous vesicle of DDAB and HRP onto the glassy carbon (GC) electrode. The direct electron transfer between electrode and HRP immobilized in lipid film has been demonstrated. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. A pair of redox peaks attributed to the direct redox reaction of HRP were observed in the phosphate buffer solution (pH 5.5). The cathodic peak current increased dramatically while anodic peak decreased by addition of small amount H2O2. The pH effect on amperometric response to H2O2 was studied. The biosensor also exhibited fast response (5 s), good stability and reproducibility.
Resumo:
The interaction of MP-11 as a model of antioxidatase enzymes with La3+ was investigated. It was found that La3+ can increase in the non-planarity of heme and the content of alpha helix and beta turn conformations of the MP11 molecule. The change in the secondary structure of the MP-11 molecule can increase in the exposure extent of heme to the solution. Therefore, the electrochemical reaction of MP-11 is promoted and the electrocatalytic activity to the reduction of H2O2 is increased. The results are consistent with that for the interaction of peroxidases(POD), one of the antioxidatase enzymes, obtained in the living plant experiments at low concentration of La3+.
Resumo:
The electrochemical behavior of horseradish peroxidase (HRP) in the dimyristoyl phosphatidylcholine (DMPC) bilayer on the glassy carbon (GC) electrode was studied by cyclic voltammetry. The direct electron transfer of HRP was observed in the DMPC bilayer. Only a small cathodic peak was observed for HRP on the bare GC electrode. The electron transfer of HRP in the DMPC membrane is facilitated by DMPC membrane. UV-Vis and circular dichroism (CD) spectroscopy were used to study the interaction between HRP and DMPC membrane. On binding to the DMPC membrane the secondary structure of HRP remains unchanged while there is a substantial change in the conformation of the heme active site. Tapping mode atomic force microscopy (AFM) was first applied for the investigation on the structure of HRP adsorbed on supported phospholipid bilayer on the mica and on the bare mica. HRP molecules adsorb and aggregate on the mica without DMPC bilayer. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed in the DMPC bilayer. The adsorption of HRP in the DMPC bilayer changes drastically the domains and defects in the DMPC bilayer due to a strong interaction between HRP and DMPC films.
Resumo:
A novel manganese phosphomolybdate, [H3N(CH2)(4)NH3](H3O)(2){[Mn(phen)(2)](4)[(MnMovO30)-O-12(HPO4)(6)(H2PO4)(2)]} . 4H(2)O 1, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. The crystal data: triclinic, P (1) over bar, a = 14.172(7) Angstrom, b = 16.547(2) Angstrom, c = 16.679(3) Angstrom, alpha = 62.881(12)degrees, beta = 73.83(3)degrees, gamma = 88.81(3)degrees. X-ray crystallography shows that the [Mn(phen)(2)] fragments are covalently bonded to the [Mn(Mo6P4)(2)] dimers leading to a one-dimensional chain with rectangular cavities occupied by tetramethylene-diamine cations and water molecules. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A novel method for fabrication of horseradish peroxidase biosensor has been developed by self-assembling gold nanoparticles to a thiol-containing sol-gel network. A cleaned gold electrode was first immersed in a hydrolyzed (3-mercaptopropyl)-trimethoxysilane (MPS) sol-gel solution to assemble three-dimensional silica gel, and then gold nanoparticles were chemisorbed onto the thiol groups of the sol-gel network. Finally, horseradish peroxidase (HRP) was adsorbed onto the surface of the gold nanoparticles. The distribution of gold nanoparticles and HRP was examined by atomic force microscopy (AFM). The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The performance and factors influencing the performance of the resulting biosensor were studied in detail. The resulting biosensor exhibited fast amperometric response (2.5 s) to H2O2. The detection limit of the biosensor was 2.0 mumol L-1, and the linear range was from 5.0 mumol L-1 to 10.0 mmol L-1. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability.
Resumo:
An optical fiber bienzyme sensor based on the luminol chemiluminescent reaction was developed and demonstrated to be sensitive to glucose. Glucose oxidase (GOD) and horseradish peroxidase (HRP) were co-immobilized by microencapsulation in a sol-gel film derived from tetraethyl orthosilicate(TEOS). The calibration plots for glucose were established by the optical fiber glucose sensor fabricated by attaching the bienzyme silica gel onto the glass window of the fiber bundle. The linear range was 0.2-2 mmol/L and the detection limit was approximately 0.12 mmol/L. The relative standard deviation was 5.3% (n = 6). The proposed biosensor was applied to glucose assay in ofloxacin injection successfully.
Resumo:
By screening the phage-displayed human single chain antibody library, we have got the specific single chain antibody bound to GSH-S-DNP butyl ester as the hapten. The tertiary structure of the protein was analyzed with the aid of computer, and the results showed the CDR3 region located on the surface of the antibody. The soluble antibody was expressed in E. coli. and the active site serine was converted into selenocysteine with the chemical modifying method, which resulted in the catalytic antibody with GPx activity of 80 U/mu mol. Furthermore, the same Ping-Pong mechanism as the natural GPx was observed when the kinetic behavior of the antibody was studied.
Resumo:
Detailed circular dichroism(CD) and Fourier transform infrared (FTIR) studies have been carried out to monitor thermal unfolding of horseradish peroxidase isoenzyme C(HRP) inhibited by CN(HRP-CN). The results suggest that HRP-CN is quite different from native HRP with different spin states of Fe of heme and different coordinated states. Cyanide becomes the sixth ligand of Fe(I) of heme and the hydrogen-binding network is destroyed partly at the same time, which cause the drastic decrease of thermal stability of HRP. The FTIR and Soret-CD spectra analysis demonstrate that during the heating process there is an intermediate state(I') which has both partly destroyed secondary and tertiary structures of native HRP, then it is the appearance of protein aggregation state(A) after fully unfolding. The unfolding pathway thus can be shown as follows: I -->I'-->U -->A.
Resumo:
In order to generate catalytic antibodies with glutathione peroxidase (GPx) activity, we prepared GSH-S-DNP butyl ester and GSH-S-DNP benzyl ester as the haptens. Two ScFvs that bound specifically to the haptens were selected from the human phage-displayed antibody library. The two ScFv genes were highly homologous, consisting of 786 bps and belonging to the same VH family-DP25. In the premise of maintaining the amino acid sequence, mutated plasmids were constructed by use of the mutated primers in PCR, and they were over-expressed in E. coli. After the active site serine was converted into selenocysteine with the chemical modifying method, we obtained two human catalytic antibodies with GPx activity of 72.2U/mu mol and 28.8U/mu mol, respectively. With the aid of computer mimicking, it can be assumed that the antibodies can form dimers and the mutated selenocysteine residue is located in the binding site. Furthermore, the same Ping-Pong mechanism as the natural GPx was observed when the kinetic behavior of the antibody with the higher activity was studied. (C) 2001 Elsevier Science BY. All rights reserved.