148 resultados para M-term Approximation
Resumo:
The present study monitored 10-year-old fish and piscivorous birds from sites contaminated for many Stars. The data reflected the results of actual, long-term environmental exposures, The results demonstrate that different tissues of fish have quite different concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F), The concentration order of PCDD/F within fish is liver congruent to egg congruent to intestines kidney congruent to hearts gill congruent to bladders > muscle > brain. The concentration order of PCDD/F within piscivorous birds was livers egg congruent to hearts muscle congruent to stomachs brain, The results obtained also demonstrate that the accumulation patterns of piscivorous birds and fish are quite different. The tissues of fish and piscivorous birds have different capacities for bioaccumulation and biotransformation of PCDD/F; variable proportions of TEQs were also found throughout their bodies. In fish, toxic equivalency quotient (TEQ): PCDD/F ratios in various tissues ranged from 0.01 to 0.07, whereas in birds the ratios ranged from 0.07 to 0.43. If the concentrations are normalized with lipid content, the results vary less. The effect of different lipid properties is obvious in the case of brain tissue, which is richer in phospholipids. (C) 2000 Academic Press.
Resumo:
From surveys made in 1962-1963, 1973-1974, 1979-1996 at two Stations in Lake Donghu, a shallow eutrophic water body near Wuhan, P. R. China, the authors, derive long-term changes in species composition, standing crop and body-size of planktonic crustaceans. The species number decreased from the 1960s to the 1990s. The cladocerans dropped from 46 (1960s) to 26 (1980s) to 13 (1990s); the copepods decreased from 14 (1960s) to 10 (1980s) to 7 (1990s). From the mid-1980s on, the dominant crustaceans also changed: Daphnia hyalina and D. carinata ssp. were replaced by Moina micrura and Diaphanosoma brachyurum at Stations 1 and 2, respectively; Cyclops vicinus replaced Mesocyclops leuckarti. Densities and biomass of Cladocera decreased markedly after 1987. Annual average densities and biomass of cladocerans were statistically differences between 1962-1986 and 1987-1996 (P < 0.01). Annual average densities of Daphnia (Station 1 + Station 2) were negatively correlated with fish yield. Since the 1980s, annual average body length of Cladocera and Calanoida decreased, while annual average body length of Cyclopoida increased. In the same years, average body length of copepods was lower during May-October than during January-April and November-December. A 12-yr data analysis showed annual average concentration of chlorophyll-a (Chl-a) to be negatively correlated with annual average density of Daphnia, whilst lake transparency was positively correlated with annual average densities of Daphnia. The results imply that, since Daphnia feeds efficiently on phytoplankton, it could decrease concentration of Chl-a, and enhance water transparency.
Resumo:
The electronic structure and mechanical properties Of UC2 and U2C3 have been systematically investigated using first-principles calculations by the projector-augmented-wave (PAW) method. Furthermore, in order to describe precisely the strong on-site Coulomb repulsion among the localized U 5f electrons, we adopt the generalized gradient approximation +U formalisms for the exchange-correlation term. We show that our calculated structural parameters and electronic properties for UC2 and U2C3 are in good agreement with the experimental data by choosing an appropriate Hubbard U = 3 eV. As for the chemical bonding nature, the contour plot of charge density and total density of states suggest that UC2 and U2C3 are metallic mainly contributed by the 5f electrons, mixed with significant covalent component resulted from the strong C-C bonds. The present results also illustrate that the metal-carbon (U-C) bonding and the carbon-carbon covalent bonding in U2C3 are somewhat weaker than those in UC2, leading to the weaker thermodynamic stability at high temperature as observed by experiments.
Resumo:
The exact calculation of mode quality factor Q is a key problem in the design of high-Q photonic crystal nanocavity. On the basis of further investigation on conventional Pade approximation, FDM and DFT, Pade approximation with Baker's algorithm is enhanced through introducing multiple frequency search and parabola interpolation. Though Pade approximation is a nonlinear signal processing method and only short time sequence is needed, we find the different length of sequence requirements for 2D and 3D FDTD, which is very important to obtain convergent and accurate results. By using the modified Pade approximation method and 3D FDTD, the 2D slab photonic crystal nanocavity is analyzed and high-Q multimode can be solved quickly instead of large range high-resolution scanning. Monitor position has also been investigated. These results are very helpful to the design of photonic crystal nanocavity devices. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electronic structure, elastic constants, Poisson's ratio, and phonon dispersion curves of UC have been systematically investigated from the first-principles calculations by the projector-augmented-wave (PAW) method. In order to describe precisely the strong on-site Coulomb repulsion among the localized U 5f electrons, we adopt the local density approximation (LDA) + U and generalized gradient approximation (GGA) + U formalisms for the exchange correlation term. We systematically study how the electronic properties and elastic constants of UC are affected by the different choice of U as well as the exchange-correlation potential. We show that by choosing an appropriate Hubbard U parameter within the GGA + U approach, most of our calculated results are in good agreement with the experimental data. Therefore. the results obtained by the GGA + U with effective Hubbard parameter U chosen around 3 eV for UC are considered to be reasonable. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Pade approximation with Baker's algorithm is compared with the least-squares Prony method and the generalized pencil-of-functions (GPOF) method for calculating mode frequencies and mode Q factors for coupled optical microdisks by FDTD technique. Comparisons of intensity spectra and the corresponding mode frequencies and Q factors show that the Pade approximation can yield more stable results than the Prony and the GPOF methods, especially the intensity spectrum. The results of the Prony method and the GPOF method are greatly influenced by the selected number of resonant modes, which need to be optimized during the data processing, in addition to the length of the time response signal. Furthermore, the Pade approximation is applied to calculate light delay for embedded microring resonators from complex transmission spectra obtained by the Pade approximation from a FDTD output. The Prony and the GPOF methods cannot be applied to calculate the transmission spectra, because the transmission signal obtained by the FDTD simulation cannot be expressed as a sum of damped complex exponentials. (C) 2009 Optical Society of America
Resumo:
The propagation losses in single-line defect waveguides in a two-dimensional (2D) square-lattice photonic crystal (PC) consisted of infinite dielectric rods and a triangular-lattice photonic crystal slab with air holes are studied by finite-difference time-domain (FDTD) technique and a Pade approximation. The decaying constant beta of the fundamental guided mode is calculated from the mode frequency, the quality factor (Q-factor) and the group velocity v(g) as beta = omega/(2Qv(g)). In the 2D square-lattice photonic crystal waveguide (PCW), the decaying rate ranged from 10(3) to 10(-4) cm(-1) can be reliably obtained from 8 x 10(3)-item FDTD output with the FDTD computing time of 0.386 ps. And at most 1 ps is required for the mode with the Q-factor of 4 x 10(11) and the decaying rate of 10(-7) cm(-1). In the triangular-lattice photonic crystal slab, a 10(4)-item FDTD output is required to obtain a reliable spectrum with the Q-factor of 2.5 x 10(8) and the decaying rate of 0.05 cm(-1). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A new method to measure reciprocal four-port structures, using a 16-term error model, is presented. The measurement is based on 5 two-port calibration standards connected to two of the ports, while the network analyzer is connected to the two remaining ports. Least-squares-fit data reduction techniques are used to lower error sensitivity. The effect of connectors is deembedded using closed-form equations. (C) 2007 Wiley Periodicals, Inc.
Resumo:
We present a modified method for detecting the concurrence in an arbitrary two-qubit quantum state rho(AB) with local operations and classical communication. In this method, it is not necessary for the two observers to prepare the quantum state rho(AB) by the structural physical approximation. Their main task is to measure four specific functions via two local quantum networks. With these functions they can determine the concurrence and then the entanglement of formation.
Resumo:
Formulation of a 16-term error model, based on the four-port ABCD-matrix and voltage and current variables, is outlined. Matrices A, B, C, and D are each 2 x 2 submatrices of the complete 4 x 4 error matrix. The corresponding equations are linear in terms of the error parameters, which simplifies the calibration process. The parallelism with the network analyzer calibration procedures and the requirement of five two-port calibration measurements are stressed. Principles for robust choice of equations are presented. While the formulation is suitable for any network analyzer measurement, it is expected to be a useful alternative for the nonlinear y-parameter approach used in intrinsic semiconductor electrical and noise parameter measurements and parasitics' deembedding.
Resumo:
The finite-difference time domain (FDTD) technique and the Pade approximation with Baker's algorithm are used to calculate the mode frequencies and quality factors of cavities. Comparing with the fast Fourier transformation/Pade method, we find that the Fade approximation and the Baker's algorithm can obtain exact resonant frequencies and quality factors based on a much shorter time record of the FDTD output.
Resumo:
The mode wavelength and quality factor (Q-factor) for resonant modes in optical equilateral triangle resonators (ETR's) are calculated by the finite-difference time-domain (FDTD) technique and the Pade approximation, For an ETR with the side length of 3 mu m and the refractive index of 3.2, we get the mode wavelength interval of about 70 nm and the Q-factor of the fundamental mode over 10(3), The results show that the ETR is suitable to realize single-mode operation, and that the radiation loss in the corner regions of ETR is rather low, In addition, the numerical results of the mode wavelength agree very well with our analytical formula.
Resumo:
Usually in the calculation of valence subband structure for III-V direct bandgap material, axial approximation had been used in the Luttinger-Kohn model to simplify the computational efforts. In this letter, the valence subband structure for the GaInP/AlGaInP strained and lattice-matched quantum wells was calculated without axial approximation, on the basis of 6x6 Luttinger-Kohn Hamiltonian including strain and spin-orbit splitting effects. The numerical simulation results were presented with help of the finite-difference methods. The calculation results with/without axial approximation were compared and the effect of axial approximation on the valence subband structure was discussed in detail. The results indicated that there was a strong warping in the GaInP valence band, and axial approximation can lead to an error when k was not equal to zero, especially for compressively strained and lattice-matched GaInP/AlGaInP quantum wells.
Resumo:
The time delay for light transmission in a coupled microring waveguide structure is calculated from the phase shift of the transmission coefficient obtained by Pade approximation with Baker's algorithm from FDTD Output. The results show that the Pade approximation is a powerful tool for saving time in FDTD simulation.