209 resultados para Low-pressure systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of organic contamination in vacuum on the laser-induced damage threshold (LIDT) of coatings is studied. TiO2/SiO2 dielectric mirrors with high reflection at 1064 nm are deposited by the electron beam evaporation method. The LIDTs of mirrors are measured in vacuum and atmosphere, respectively. It is found that the contamination in vacuum is easily attracted to optical surfaces because of the low pressure and becomes the source of damage. LIDTs of mirrors have a little change in vacuum compared with in atmosphere when the organic contamination is wiped off. The results indicate that organic contamination is a significant reason to decrease the LIDT. N-2 molecules in vacuum can reduce the influence of the organic contaminations and prtectect high reflectance coatings. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the photochemical reduction process of Hg (II) in aqueous solution containing ferric iron and oxalate (Ox) has been studied. Under the radiation of a low-pressure mercury lamp (lambda = 253.7 nm, 8W), Fe(III)-oxalate complexes undergo photolysis to produce ferrous ions and other organic reductive species, which reduce Hg(II) subsequently. For 0.1 mg/L Hg (II), the photoreduction efficiency is comparatively higher in the solution at pH 5.0 than that over the range of 3.0 similar to 8.0. The photoreduction efficiency of Ho (II) in aqueous solution increases with increasing, initial concentration of ferric ions from 0.02 mmol/L to 0.2 mmol/L and initial concentration of oxalate from 0.96 mmol/L to 4.8 mmol/L and then gradually approaches to a steady state. CH3OH also contributes the reduction of Hg (II). We investigate the increase of the ferric, oxalate and CH3OH concentrations resulting from the increase of reduction efficiency of Hg (II). It can be seen that ferrous ions and other reactive species are reductants of Hg (II), and the reaction product with oxalate is mainly volatile metallic mercury.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The temperature dependence of hole spin relaxation time in both neutral and n-doped ultrathin InAs monolayers has been investigated. It has been suggested that D'yakonov-Perel (DP) mechanism dominates the spin relaxation process at both low and high temperature regimes. The appearance of a peak in temperature dependent spin relaxation time reveals the important contribution of Coulomb scatterings between carriers to the spin kinetics at low temperature, though electron-phonon scattering becomes dominant at higher temperatures. Increased electron screening effect in the n-doped sample has been suggested to account for the shortened spin relaxation time compared with the undoped one. The results suggest that hole spins are also promising for building solid-state qubits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A metallization scheme of Ni/Ag/Ti/Au has been developed for obtaining high reflective contacts on p-type GaN. In order to find optimal conditions to get a high reflectivity, we studied samples with various Ni thicknesses, annealing temperatures and annealing times. By annealing at 500 degrees C for 5 min in an O-2 ambient, a reflectivity as high as 94% was obtained from Ni/Ag/Ti/Au (1/120/120/50 nm). The effects of Ti layers on the suppression of Ag agglomeration were investigated by using Auger electron spectroscopy (AES). From AES depth profiles, it is clear that Ti acts as a diffusion barrier to prevent Au atoms from diffusing into the Ag layer, which is important in the formation of high reflectivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have systematically investigated the magnetic properties of Si-doped (Ga,Mn)As films. When the Si content is low, both Curie temperature (T-C) and carrier density (p) decrease compared with undoped (Ga,Mn)As, whereas a monotonic increase of T-C and p is observed with further increase in the doping content of Si. We discuss the possible mechanism for the changes obtained by different Si doping contents and attribute the results to a competition between the existence of Si-Ga (Si substitutes for Ga site) that acts as a donor and Si-I (Si interstitials) which is in favor of the improvement of ferromagnetism. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZnMgO hexagonal-nanotowers/films grown on m-plane sapphire substrates were successfully synthesized using a vertical low-pressure metal organic chemical vapour deposition system. The structural and optical properties of the as-obtained products were characterized using various techniques. They were grown along the non-polar [1 0 (1) over bar 0] direction and possessed wurtzite structure. The ZnMgO hexagonal-nanotowers were about 200 nm in diameter at the bottom and 120 nm in length. Photoluminescence and Raman spectra show that the products have good crystal quality with few oxygen vacancies. With Mg incorporation, multiple-phonon scattering becomes weak and broad, and the intensities of all observed vibrational modes decrease. The ultraviolet near band edge emission shows a clear blueshift (as much as 100 meV) and broadening compared with that of pure ZnO products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the monolithic integration of a sampled-grating distributed Bragg reflector (SC-DBR) laser with a quantum-well electroabsorption modulator (QW-EAM) by combining ultra-low-pressure (55 mbar) selective-area-growth (SAG) metal-organic chemical vapour deposition (MOCVD) and quantum-well intermixing (QWI) for the first time. The QW-EAM and the gain section can be grown simultaneously by using SAG MOCVD technology. Meanwhile, the QWI technology offers an abrupt band-gap change between two functional sections, which reduces internal absorption loss. The experimental results show that the threshold current I-th = 62 mA, and output power reaches 3.6 mW. The wavelength tuning range covers 30 nm, and all the corresponding side mode suppression ratios are over 30 dB. The extinction ratios at available wavelength channels can reach more than 14 dB with bias of -5 V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate theoretically CdTe quantum dots containing a single Mn2+ impurity, including the sp-d exchange interaction between carriers and the magnetic ion and the short-range exchange interaction between electron and hole. We find anticrossing behaviors in the energy spectrum of the electron-hole (e-h) pair that arise from the interplay between exchange interactions and the magnetic field. In addition to the s-d exchange interaction, we find that other mechanisms inducing the anticrossings become important in the strong heavy hole-light hole (hh-lh) mixing regime. The transition strengths between the states with spin projection of Mn2+ ion S-z not equal -5/2 (S-z = -5/2) decrease (increase) with increasing magnetic fields due to the alignment of the Mn2+ spin. The spin splitting of the e-h pair states depends sensitively on the external magnetic and electric field, which reveals useful information about the spin orientation and position of the magnetic ion. Meanwhile, the manipulation of the position of the magnetic ion offers us a way to control the spin splitting of the carriers. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tensile-strained GaAsP/GaInP single quantum well (QW) laser diode (I-D) structures have been grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) and related photoluminescence (PL) properties have been investigated in detail. The samples have the same well thickness of 16 nm but different P compositions in a GaAsP QW. Two peaks in room temperature (RT) PL spectra are observed for samples with a composition larger than 0.10. Temperature and excitation-power-dependent PL spectra have been measured for a sample with it P composition of 0.15. It is found that the two peaks have a 35 meV energy separation independent of temperature and only the low-energy peak exists below 85 K. Additionally, both peak intensities exhibit a monotonous increase as excitation power increases. Analyses indicate that the two peaks arise from the intrinsic-exciton recombination mechanisms of electron-heavy hole (e-hh) and electron-light hole (e-hh). A theoretical calculation based oil model-solid theory, taking, into account the spin-orbit splitting energy, shows good agreement with our experimental results. The temperature dependence of PL intensity ratio is well explained using the spontaneous emission theory for e-hh and e-hh transitions. front which the ratio can be characterized mainly by the energy separation between the fill and Ill states.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mn-including InAs quantum dots (QDs) were fabricated by Mn-ion implantation and subsequent annealing. The optical, compositional, and structural properties of the treated samples were analyzed by photoluminescence (PL) and microscopy. Energy dispersive X-ray (EDX) results indicate that Mn ions diffused from the bulk GaAs into the InAs QDs during annealing, and the diffusion appears to be driven by the strain in the InAs QDs. The temperature dependence of the PL of Mn-including InAs QD samples exhibits QDs PL characteristics. At the same time, the heavy Mn-including InAs QD samples have ferromagnetic properties and high T-c. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have theoretically investigated the energy band structures of two typical magnetic superlattices formed by perpendicular or parallel magnetization ferromagnetic stripes periodically deposited on a two-dimensional electron gas (2DEG), where the magnetic profile in the perpendicular magnetization is of inversion anti-symmetry, but of inversion symmetry in parallel magnetization, respectively. We have shown that the energy bands of perpendicular magnetization display the spin-splitting and transverse wave-vector symmetry, while the energy bands of the parallel magnetization exhibit spin degeneration and transverse wave-vector asymmetry. These distinguishing spin-dependent and transverse wave-vector asymmetry features are essential for future spintronics devices applications. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The confined longitudinal-optical phonon-assisted tunneling through a parabolic quantum well with double barriers in a magnetic field perpendicular to the interfaces is studied theoretically based on a dielectric continuum model. The numerical results show that the applied magnetic field sharpens and heightens the phonon-assisted tunneling peaks in agreement with experimental observation. Furthermore, the phonon-assisted magnetotunneling peaks shift towards the higher biases as the magnetic field increases. In contrast to the results for a rectangular quantum well, the ratio of peak to valley of the phonon-assisted tunneling is larger for the wider well case. It also indicates that the phonon-assisted tunneling current peaks can be easily observed for a wider parabolic quantum well. (C) 2008 Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a quantum dot (QD) ensemble structure in which the in-plane arrangements of the dots are in a hexagonal way while the dots are also vertically aligned. Such a distinct lateral ordering of QDs is achieved on a planar GaAs(l 0 0) rather than on a prepatterned substrate by strain-mediated multilayer vertical stacking of the QDs. The analysis indicates that the strain energy of the lateral island-island interaction is minimum for arrangement of the hexagonal ordering. The ordered dots demonstrate strong photoluminescence (PL) emission at room temperature (RT) and the full width at half maximum of PL peak at RT is only 50 meV. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the effects of accumulated strain by stacking on the surface and optical properties of stacked 1.3 mu m InAs/GaAs quantum dot (QD) structures grown by MOCVD. It is found that the surface of the stacked QD structures becomes more and more undulated with stacking, due to the increased strain in the stacked QD structures with stacking. The photoluminescence intensity from the QD structures first increases as the stacking number increases from 1 to 3 and then dramatically decreases as it further increases, implying a significant increase in the density of crystal defects in the stacked QD structures due to the accumulated strain. Furthermore, we demonstrate that the strain can be reduced by simply introducing annealing steps just after growing the GaAs spacers during the deposition of the stacked QD structures, leading to significant improvement in the surface and optical properties of the structures. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We grow In-GaAs quantum dot (QD) at low growth rate with 70 times insertion of growth interruption in MBE system. It is found that because of the extreme growth condition, QDs exhibit a thick wetting layer, large QD height value and special surface morphology which is attributed to the In segregation effect. Temperature dependence of photoluminescence measurement shows that this kind of QDs has a good thermal stability which is explained in terms of a "group coupling" model put forward by us. (C) 2007 Elsevier B.V. All rights reserved.