127 resultados para Impulsive Differential Inclusion
Resumo:
This paper studies the security of the block ciphers ARIA and Camellia against impossible differential cryptanalysis. Our work improves the best impossible differential cryptanalysis of ARIA and Camellia known so far. The designers of ARIA expected no impossible differentials exist for 4-round ARIA. However, we found some nontrivial 4-round impossible differentials, which may lead to a possible attack on 6-round ARIA. Moreover, we found some nontrivial 8-round impossible differentials for Camellia, whereas only 7-round impossible differentials were previously known. By using the 8-round impossible differentials, we presented an attack on 12-round Camellia without FL/FL 1 layers.
Resumo:
N-shaped negative differential resistance (NDR) with a high peak-to-valley ratio (PVR) is observed in a GaAs-based modulation-doped field effect transistor (MODFET) with InAs quantum dots (QDs) in the barrier layer (QDFET) compared with a GaAs MODFET. The NDR is explained as the real-space transfer (RST) of high-mobility electrons in a channel into nearby barrier layers with low mobility, and the PVR is enhanced dramatically upon inserting the QD layer. It is also revealed that the QD layer traps holes and acts as a positively charged nano-floating gate after a brief optical illumination, while it acts as a negatively charged nano-floating gate and depletes the adjacent channel when charged by the electrons. The NDR suggests a promising application in memory or high-speed logic devices for the QDFET structure.
Resumo:
An electrically bistable device has been fabricated using nanocomposite films consisting of silver nanoparticles and a semiconducting polymer by a simple spin-coating method. The current-voltage characteristics of the as-fabricated devices exhibit an obvious electrical bistability and negative differential resistance effect. The current ratio between the high-conducting state and low-conducting state can reach more than 103 at room temperature. The electrical bistability of the device is attributed to the electric-filed-induced charge transfer between the silver nanoparticles and the polymer, and the negative differential resistance behavior is related to the charge trapping in the silver nanoparticles. The results open up a simple approach to fabricate high quality electrically bistable devices by doping metal nanoparticles into polymer.