82 resultados para IN-MEDIUM KAON
Resumo:
The not only lower but also uniform MEMS chip temperatures can he reached by selecting suitable boiling number range that ensures the nucleate boiling heat transfer. In this article, boiling heat transfer experiments in 10 silicon triangular microchannels with the hydraulic diameter of 55.4 mu m were performed using acetone as the working fluid, having the inlet liquid temperatures of 24-40 degrees C, mass fluxes of 96-360 kg/m(2)s, heat fluxes of 140-420 kW/m(2), and exit vapor mass qualities of 0.28-0.70. The above data range correspond to the boiling number from 1.574 x 10(-3) to 3.219 x 10(-3) and ensure the perfect nucleate boiling heat transfer region, providing a very uniform chip temperature distribution in both streamline and transverse directions. The boiling heat transfer coefficients determined by the infrared radiator image system were found to he dependent on the heat Axes only, not dependent on the mass Axes and the vapor mass qualities covering the above data range. The high-speed flow visualization shows that the periodic flow patterns take place inside the microchannel in the time scale of milliseconds, consisting of liquid refilling stage, bubble nucleation, growth and coalescence stage, and transient liquid film evaporation stage in a full cycle. The paired or triplet bubble nucleation sites can occur in the microchannel corners anywhere along the flow direction, accounting for the nucleate boiling heat transfer mode. The periodic boiling process is similar to a series of bubble nucleation, growth, and departure followed by the liquid refilling in a single cavity for the pool boiling situation. The chip temperature difference across the whole two-phase area is found to he small in a couple of degrees, providing a better thermal management scheme for the high heat flux electronic components. Chen's [11 widely accepted correlation for macrochannels and Bao et al.'s [21 correlation obtained in a copper capillary tube with the inside diameter of 1.95 mm using R11 and HCFC123 as working fluids can predict the present experimental data with accepted accuracy. Other correlations fail to predict the correct heat transfer coefficient trends. New heat transfer correlations are also recommended.
Resumo:
The pp -> pn pi(+) reaction is a channel with the largest total cross section for pp collision in COSY/CSR energy region. In this work, we investigate individual contributions from various N* and Delta* resonances with mass up to about 2 GeV for the pp -> pn pi(+) reaction. We extend a resonance model, which can reproduce the observed total cross section quite well, to give theoretical predictions of various differential cross sections for the present reaction at T-p = 2.88 GeV. It could serve as a reference for identifying new physics in the future experiments at HIRFL-CSR.
Resumo:
We investigate the composition and the equation of state of the kaon condensed phase in neutrino-free and neutrino-trapped star matter within the framework of the Brueckner-Hartree-Fock approach with three-body forces. We find that neutrino trapping shifts the onset density of kaon condensation to a larger baryon density, and reduces considerably the kaon abundance. As a consequence, when kaons are allowed, the equation of state of neutrino-trapped star matter becomes stiffer than the one of neutrino free matter. The effects of different three-body forces are compared and discussed. Neutrino trapping turns out to weaken the role played by the symmetry energy in determining the composition of stellar matter, and thus reduces the difference between the results obtained by using different three-body forces.
Resumo:
Medium-spin states of Ge-70 have been studied via the Ni-60(C-12,2p gamma)Ge-70 reaction at 45 MeV. The ground-state band and the second 0(+) band have been extended to the 12(+) and 8(+) states, respectively. Two negative-parity bands, one of which has a coupled structure and the other has a decoupled structure, have been observed additionally. Although the latter decoupled structure was known up to the (21(-)) state from a previous experiment, the part of the level scheme up to the 15(-) state has been largely modified by the present experiment. Backbendings observed in the positive- and negative-parity yrast bands have been compared with those of the neighboring even Ge isotopes. The experimental level structure has been compared with the shell-model calculations in the model space (2p(3/2), 1f(5/2), 2(p1/2), 1g(9/2)) employing two kinds of effective interactions, one of which is an extended P + QQ interaction with monopole interactions and the other is developed from a renormalized G matrix. Microscopic structures of the observed bands have been discussed with the help of the shell-model calculations.
Resumo:
Based on the isospin-dependent transport model IBUU and on the scaling model according to nucleon effective mass, effects of elastic and inelastic NN scattering cross-sections on pi(-)/pi(+) in the neutron-rich reaction Ca-48 + Ca-48 at a beam energy of 400MeV/nucleon are studied. It is found that cross-section effects of both NN elastic and inelastic scatterings affect Delta(1232), pi(-) and pi(+) productions as well as the value of pi(-)/pi(+).
Resumo:
The extraction behavior of lanthanides and yttrium usinsg CYANEX 925 (mixture of branched chain alkylated phosphine oxides) in n-heptane from nitrate medium has been studied. The effects of aqueous phase ionic strength, CYANEX 925 concentration in the organic phase, and temperature on Sm3+, Nd3+ and Y3+ extraction have been investigated. The extractability of the lanthanides and yttrium increases with increasing nitrate concentration, as well as with increasing CYANEX 925 concentration. An extraction mechanism is proposed based on slope analysis. Furthermore, the infra-red spectra of CYANEX 925 saturated with lanthanides are employed to provide evidence of the composition of the complex. The relationship between the logarithm of the distribution ratio and lanthanide atomic number is also discussed which indicates that yttrium can be separated from fight lanthanides. In addition separation of the light and heavy lanthanide groups is also possible using CYANEX 925. From the temperature dependence data, the thermodynamic parameters values (Delta H, Delta S and Delta G) are calculated.
Resumo:
The extraction kinetics of Sc, Y, La and Gd(III) from the hydrochloric acid medium using Cyanex 302 (hereafter HL) in heptane solution have been measured by the constant interfacial cell with laminar flow. Reaction regions are explored at liquid-liquid interface. Extraction regimes are deduced to be diffusion-controlled for Sc(Ill) and mixed controlled for Y, La and Gd(Ill). Extraction mechanisms are discussed according to the dimeric model of Cyanex 302 in non-polar solution. From the temperature dependence of rate measurement, the values of E-a, Delta H-+/-, Delta S-+/- and Delta G(300)(+/-) are calculated and it is found that the absolute values of these parameters keep crescent trend for Sc, Y, La and Gd(III). At the same time, it is found that it can easily achieve the mutual separation among the Sc, Y and La(III) with kinetics extraction methods.
Resumo:
An acid-stable soybean-peroxidase biosensor was devel oped by immobilizing the enzyme in a sol-gel thin film. Methylene blue was used as a mediator because of its high electron-transfer efficiency. The sol-gel thin film and enzyme membrane were characterized by FT-IR, and the effects of pH, operating potential, and temperature were explored for optimum analytical performance by using the amperometric method. The H2O2 sensor exhibited a fast response (5 s), high sensitivity (27.5 mu A/mM), as well as good thermostability and long-term stability. In addition, the performance of the biosensor was investigated using flow-injection analysis (FIA).