97 resultados para Homonuclear diatomic molecules
Resumo:
A novel biodegradable aliphatic poly(L-lactide-co-carbonate) bearing pendant acetylene groups was successfully prepared by ring-opening copolymerization of L-lactide (LA) with 5-methyl-5-propargyloxycarbonyl-1,3-dioxan-2-one (PC) in the presence of benzyl alcohol as initiator with ZnEt2 as catalyst in bulk at 100 degrees C and subsequently used for grafting 2-azidoethyl beta-D-glucopyranoside and 2-azidoethyl beta-lactoside by the typical "click reaction," that is Cu(I)-catalyzed cycloaddition of azide and alkyne. The density of acetylene groups in the copolymer can be tailored by the molar ratio of PC to LA during the copolymerization. The aliphatic copolymers grafted with sugars showed low cytotoxicity to L929 cells, improved hydrophilic properties and specific recognition and binding ability with lectins, that is Concanavalin A (Con A) and Ricinus communis agglutinin (RCA). Therefore, this kind of sugar-grafted copolymer could be a good candidate in variety of biomedical applications.
Resumo:
Scanning probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), has become a powerful tool in building nanoscale structures required by modern industry. In this article, the use of SPM for the manipulation of atoms and molecules for patterning nanostructures for opt-electronic and biomedical applications is reviewed. The principles and procedures of manipulation using STM and AFM-based technologies are presented with an emphasis on their ability to create a wide variety of nanostructures for different applications. The interaction among the atoms/molecules, surface, and tip are discussed. The approaches for positioning the atom/molecule from and to the desired locations and for precisely controlling its movement are elaborated for each specific manipulation technique. As an AFM-based technique, the dip-pen nanolithography is also included. Finally, concluding remarks on technological improvement and future research is provided.
Resumo:
Equilibrium geometries, vibrational frequencies, and dissociation energies of the transition metal carbonyls MCO (M = Nb, Ta, Rh, Ir, Pd, Pt) were studied by use of diverse density functional methods B3LYP, BLYP, B3P86, B3PW91, BHLYP, BP86, and PBE1PBE. It was found that the ground electronic state is (6)Sigma(+) for NbCO and TaCO, (2)Sigma(+) for RhCO,(2)Delta for IrCO, and (1)Sigma(+) for PdCO and PtCO, in agreement with previous theoretical studies. The calculated properties are highly dependent on the functionals employed, in particular for the dissociation energy. For most of the molecules, the predicted bond distance is in agreement with experiments and previous theoretical results. BHLYP is the worst method in reproducing the experimental results compared with the other density functional methods for the title molecules.
Resumo:
A circular bacterial artificial chromosome of 148.9 kbp on human chromosome 3 has been extended and fixed on bare mica substrates using a developed fluid capillary flow method in evaporating liquid drops. Extended circular DNA molecules were imaged with an atomic force microscope (AFM) under ambient conditions. The measured total lengths of the whole DNA molecules were in agreement with sequencing analysis data with an error range of +/-3.6%. This work is important groundwork for probing single nucleotide polymorphisms in the human genome, mapping genomic DNA, manipulating biomolecular nanotechnology, and studying the interaction of DNA-protein complexes investigated by AFM.
Resumo:
Dip-pen nanolithography (DPN) has been developed to pattern monolayer film of various molecules on suitable substrate through the controlled movement of ink-coated atomic force microscopy (AFM) tip, which makes DPN a potentially powerful tool for making the functional nanoscale devices. In this paper, the direct patterning of rhodamine 6G on mica by dip-pen nanolithography was demonstrated. R6G features patterned on the mica was successfully achieved with different tip movement which can be programmed by Nanoscript(TM) language. From the AFM image of R6G patterns, we know that R6G molecule is flatly binding to the mica surface through electrostatic interaction, thus stable R6G nanostructures could be formed on mica. The influence of translation speed and contact time on DPN was discussed. The method can be extended to direct patterning of many other organic molecules, and should open many opportunities for miniaturized optical device and site-specific biological staining.
Resumo:
A novel biodegradable amphiphilic block copolymer PLGG-PEG-PLGG bearing pendant glucose residues is successfully prepared by the coupling reaction of 3-(2-aminoethylthio) propyl-R-D-glucopyranoside with the pendant carboxyl groups of PLGG-PEG-PLGG in the presence of N,N'-carbonyldiimidazole. The polymer PLGG-PEG-PLGG, i.e., poly {(lactic acid)-co-[(glycolic acid)-alt-(L-glutamic acid)]}-block-poly(ethylene glycol)-block-poly{( lactic acid)-co-[( glycolic acid)-alt-(L-glutamic acid)]}, is prepared by ring-opening copolymerization of L-lactide (LLA) with (3s)-benzoxylcarbonylethylmorpholine-2,5-dione (BEMD) in the presence of dihydroxyl PEG with molecular weight of 2000 as macroinitiator and Sn(Oct)(2) as catalyst, and then by catalytic hydrogenation. The glucose-grafted copolymer shows a lower degree of cytotoxicity to ECV-304 cells and improved specific recognition and binding with Concanavalin A (Con A). Therefore, this kind of glucose-grafted copolymer may find biomedical applications.
Resumo:
An inherently disorganized self-assembled monolayer (SAM) of 2-mercapto-3-n-octylthiophene (MOT) has been formed on a gold bead electrode from its dilute ethanolic solution. The disorganization of the monolayer is attributed to the loose packing of the aliphatic chains of the MOT adsorbates, which results from a large difference in dimension/or cross-sectional area between the head (thiophene thiolate) and the tail (alkane chain) groups. Electrochemical measurements including ac impedance spectroscopy and metal underpotential deposition have shown that the monolayer is almost pinhole free. However, the MOT SAM can be penetrated by an organic probe molecule with affinity for the alkane chain part of the monolayer. Some typical probe molecules with different size and hydrophilicity have been employed to assess the permselectivity of the monolayer. Measurement results demonstrate that the ability of the employed probe molecules to penetrate into the monoalyer is mainly dominated by their hydrophilicity/or hydrophobicity. The results presented here suggest the potential application of MOT monoalyer to effectively modify the electrode surface for several research areas such as electrochemical sensors, electrocatalysis, electroanalysis, and supported hybrid bilayer membranes.
Resumo:
We study the dynamics of protein folding via statistical energy-landscape theory. In particular, we concentrate on the local-connectivity case with the folding progress described by the fraction of native conformations. We found that the first passage-time (FPT) distribution undergoes a dynamic transition at a temperature below which the FPT distribution develops a power-law tail, a signature of the intermittent nonexponential kinetic phenomena for the folding dynamics. Possible applications to single-molecule dynamics experiments are discussed.
Resumo:
It is important to detect the aromaticity of structures during the process of structure elucidation and output. In this paper, an alogrithm was proposed to detect the aromaticity of structures by the use of algorithm on ring identification. The results show that it could be used to identify most of the aromatic structure. It have been used as constraints of Expert System on Elucidation Structure of Organic Compounds(ESESOC) and a good result has been achieved.
Resumo:
Aggregation behavior of two amphiphilic D-pi -A molecules bearing barbituric acid as both recogniton group and electron-drawing substituent, 5-(4-dodecyl oxybenzylidene)-(1H, 3H)-2,4,6-pyrimidine trione (PB12) and 5-(4-N,N-didodecyl aminobenzylidene)-(1H,3H)-2,4,6-pyrimidine trione (AB(12)) was studied by UV-visible, fluorescence, and surface voltaic spectroscopies (SPS). The experimental results indicate that PB12 tends to form J-aggregate and AB(12) tends to form H-aggregate under increasing concentration. An intramolecular twisted charge transfer (TICT) emission around 500 nm is observed when J-aggregate is formed between PB12 molecules, and an excimer emission around 600 nm is observed when H-aggregate is formed between AB(12) molecules.
Resumo:
The series of biradicals with m-phenylene coupling unit and hetero-spin centers were calculated compared with those possessing home-spin centers using AM1-CI method. A simple rule was proposed to design high spin molecules with ferromagnetic coupling unit and hetero-spin centers. Two neutral (or charged) hetero-spin centers resulted in high spin ground state, one neutral and another charged hetero-spin centers correspond to low spin ground state. The latter was ascribed to the huge splitting of two partially occupied molecular orbitals.
Resumo:
Intermolecular ferromagnetic interactions in two stacking models for the dimer of high spin molecules are investigated by means of AM1-CI approach. It is shown that the stability of high spin ground state versus low spin state can be simply traced back to the number and the extent of atoms with reversed signs of pi-spin density in neighboring molecules coupled to each other in shortest distance.