106 resultados para Hartz IV
Resumo:
In this paper, the extraction of Ce(IV) from nitric acid solutions is investigated using di-(2-ethylhexyl) 2-ethylhexyl phosphonate (DEHEHP, B) in heptane as extractant. Ce(IV) can be extracted effectively from nitric acid solution, whereas it is poorly extracted from sulfuric acid solution. Compared with some other organophosphorus esters, DEHEHP has moderate extractablity for Ce(IV). The extraction efficiency varies with diluent in the order: aliphatic hydrocarbons > nitrobenzene > aromatic hydrocarbons > carbon tetrachloride > chloroform. Regeneration and loading capacities of DEHEHP have also been examined. Ce(IV) extraction in HNO3 solutions as well as extraction of HNO3 and H2O have been systematically studied. The Ce(IV) extraction increases with an increasing of HNO3 concentration and exhibits the maximum distribution ratio at 1-1.5 mol/L HNO3. Nitric acid, as a source of nitrate ion, enhances the extraction of metal ion. But it also competes with metal ions for extractant molecules by its own extraction under high acidities. The proposed extraction process is described by the following equilibrium equations
Resumo:
The extraction behaviour of Ce(IV), Th(IV) and part of RE(III), viz., La, Ce, Nd and Yb, has been investigated using di(2-ethylhexyl) 2-ethylhexyl phosphonate (DEHEHP,B) in heptane as an extractant. Results show that extractability varies in the order: Ce(IV) > Th(IV) much greater than RE(III). Therefore, it is possible to find the appropriate conditions under which Ce(IV) can be effectively separated from Th(IV) and RE(III). Furthermore, stripping Ce(IV) from the loaded organic phase can be carried out by dilute H2SO4 with an aliquot of H2O2.Roasted bastnasite made in Baotou (China) by Na2CO3 and leached by HNO3, there is about 50% Ce mainly as tetravalent nitrate along with other RE(III) and Th(IV) in the leachings. Through fractional extraction, taking nitric acid leachings of roasted Bastnasite as feed and DEHEHP as an extractant, we can obtain the CeO2 products with high purity of 99.9-99.99%, with a yield of >85%, in which ThO2/CeO2 < 10(-4).
Resumo:
The bastnasite of Baotou (China) was roasted in concentrated sulfuric acid at 250-300 degreesC and the calcined products were leached by water. Almost all rare earths (RE) were moved into solutions in trivalent along with some radioactive impurity thorium(IV) (Th(IV))which accounts for 0.4% of RE and other impurities such as Fe(III), Ca, F, P, etc. Through fractional extraction (seven stages for extraction and nine for scrubbing), the mass ratio of Th(IV) and RE (ThO2/REO) in solution has decreased to 5 x 10(-6). The purity of ThO2 product recovered from organic phase is above 99%. The iron(III) in solutions can be removed in the form of precipitation by adding some magnesia into the solutions. Then RE can be concentrated by solvent extraction with 2-ethylhexyl phosphinic acid 2-ethylhexylester (P-507). The results of fractional extraction show that the concentration of total RE in aqueous solutions stripped by hydrochloric acid is over 200 g REO/I with the yield of RE above 99%. Individual RE can be attained by solvent extraction with P507 in the following process.
Resumo:
The coordination reactions during the solvent extraction of cerium(IV) and fluorine(l) from mixed nitric acid and hydrofluoric acid solutions by di-(2-ethylhexyl)-2-ethylhexylphosphonate, L (DEHEHP) in heptane have been investigated. The extraction data have been analyzed by graphical methods taking into account all plausible species extracted into the organic phase. Different variables influencing the extraction of Ce(IV), such as the concentrations of nitrate ions, hydrofluroric acid, nitric acid, and extractant have been studied. The results demonstrate that DEHEHP can extract not only Ce(NO3)(4) as Ce(NO3)4.2L and HF as HF (.) H2O (.) L, but both together as Ce(HF)(NO3)(4) (.) L. The extraction equilibrium equations are determined according to slope analysis and IR spectra. The equilibrium constants of the extracted complexes have been calculated, taking into account complexation between the metal ion and inorganic ligands in the aqueous phase and all plausible complexes extracted into the organic phase. It is also shown that boric acid, which was added into the mixed solutions to complex with F(I) is not extracted by DEHEHP, and neither does it affect the extraction of cerium(IV) and HF, nor change the extraction mechanism.
Resumo:
Four self-immobilized FI catalysts with allyl substituted phenoxy-imine ligands [{4-(CH2=CHCH2O)C6H5N=CH-C6H3(3-tert-C4H9)O}(2) MCl2] (1: M = Ti: 2: M = Zr), [{3-(CH2=CHCH2O)C6H5N=CH-C6H3(3-tert-C4H9)O}(2)MCl2] (3: M = Zr), [{4-(CH2=CHCH2-2,6-(iso-C3H7)(2))C6H5N=CH-C6H3(3,5-(NO2)(2))O}(2)MCl2] (4: M = Zr) have been synthesized and characterized. The molecular structure of 2 has been determined by X-ray crystallographic analysis. The results of ethylene polymerization showed that the self-immobilized titanium (IV) and zirconium (IV) catalysts 1-3 kept high activity for ethylene polymerization and 4 showed no activity. SEM showed the immobilization effect could greatly improve the morphology of polymer particles to afford micron-granula polyolefin as supported catalysts.
Resumo:
The effects of diluents, temperature, acidity, and ionic strength of the aqueous phase on the interfacial properties of DEHEHP have been extensively investigated using the Du Nouy ring method. In addition, the effect of cerium(IV) concentration loaded in the organic phase on the interfacial tension has also been studied. With the increase of DEHEHP concentration, the value of interfacial tension (gamma) decreases in the studied system, which shows that DEHEHP has interfacial activity as a kind of surfactant. The surface excess at the saturated interface (Gamma(max)) and the minimum bulk concentration of the extractant necessary to saturate the interface (C-min) under the different conditions are calculated according to two adsorption equations such as the Gibbs and Szyszkowski functions to be presented in comprehensive tables and figures. The relationship between the interfacial activity of DEHEHP and cerium(IV) extraction kinetics by DEHEHP has been discussed by considering different factors such as the effects of diluents and temperature. However, the interfacial activity parameter of extractant only is a qualitative parameter, but cannot provide strong enough evidence to quantitatively explain the relationship between extraction kinetics and interfacial properties of an extractant.
Resumo:
Studies of the extraction kinetics of cerium(IV) into n-heptane solutions of di(2-ethylhexyl)-2-ethylhexyl phosphonate DEHEHP from HNO3-HF solutions have been carried out using a constant interfacial cell with laminar flow. The experimental hydrodynamic conditions were chosen so that the contribution of diffusion to the measured rate of reaction was minimized. The data were analyzed in terms of pseudo-first order constants. The effects of the stirring rate, specific interfacial area, and temperature on the extraction rate showed that the most probable reaction zone is in the aqueous homogeneous phase. The results were compared with those of the system without HF. It was concluded that the presence of HF decreases the extraction rate of cerium. The addition of HF increases the activation energy for the forward reaction from 21.2 to 55.3 kJ/mol and for the reverse process from 57.9 to 79.0 kJ/mol. According to the experimental data correlated as a function of the concentration of the relevant species involved in the extraction reaction, the corresponding rate equation was deduced as follows:-d[Ce]/dt = k[Ce] center dot B-0.62 center dot HF-0.58 center dot [NO3-](0.57)
Resumo:
A novel organic-inorganic hybrid compound [Cu(phen)](2)[(VV4As2O19)-V-IV-As-V-O-V].0.5H(2)O 1 has been hydrothermally synthesized. Its structure, determined by single crystal X-ray diffraction, exhibits an unusual two-dimensional arsenic vanadate layered network grafted with the [Cu(phen)](2+) complex. The chelating phen ligands project perpendicularly beyond the inorganic layer. Variable temperature magnetic susceptibility studies indicate that both ferro- and antiferro-magnetic interactions exist in 1.
Resumo:
The organic-inorganic hybrid materials vanadium oxide [(VO2)-O-IV(phen)(2)](.)6H(2)O (1) and [(2,2'-bipy)(2)(VO2)-O-V](H2BO3)(.)3H(2)O (2) have been conventional and hydrothermal synthesized and characterized by single crystal X-ray diffraction, elemental analyses, respectively. Although the method and the ligand had been used in the syntheses of the compounds (1) and (2) are different, they almost possess similar structure. They all exhibit the distorted octahedral [VO2N4] unit with organonitrogen donors of the phen and 2,2'-bipy ligands, respectively, which coordinated directly to the vanadium oxide framework. And they are both non-mixed-valence complexes. But the compound (1) is isolated, and the compound (2) consists of a cation of [(2,2'-bipy)(2)(VO2)-O-V](+) and an anion of (H2BO3)(-). So the valence of vanadium of (1) and (2) are tetravalence and pentavalence, respectively. Meanwhile it is noteworthy that pi-pi stacking interaction between adjacent phen and 2,2'-bipy groups in compounds I and 2 also play a significant role in stabilization of the structure. Thus, the structure Of [(VO2)-O-IV(phen)(2)](.)6H(2)O and [(2,2'-bipy)(2)(VO2)-O-V](H2BO3)(.)3H(2)O are both further extended into interesting three-dimensional supramolecular.
Resumo:
A new vandylpolymolybdophosphate, [H2N(C2H4)(2)NH2](4)-(H3O)[(PMo2Mo6V4O40)-Mo-V-V-VI-O-IV((VO)-O-IV)(2)].H2O, was hydrothermally synthesized and structurally characterized by elemental analyses, IR, UV-vis, XPS, ESR spectra, mid singe crystal X-ray diffraction analysis. The compound contains an unusual highly reduced pseudo-Keggin type polyoxoanion with nine negative charges and exhibits an interesting phosphorus-centered alternate layer arrangement of molybdenum and vanadium oxides.
Resumo:
A novel compound [Ni(phen)(3)](2)[(SiMo10V1/2O40)-O-V((VO)-O-IV)(2)] . 2H(2)O has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in the triclinic, system, space group P-1, a = 12.378(4) Angstrom, b = 14.148(5) Angstrom, c = 14.316(2) Angstrom, alpha = 105.91(2)degrees, beta = 95.31(2)degrees, gamma = 96.89(3)degrees, V = 2373.0(12) Angstrom(3), Z = 1, (lambdaMo(Kalpha)) = 0.71073 Angstrom, R1 (wR2) = 0.0869(0.2174). Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range of 1.51 < theta < 22.50degrees using the omega-scan technique. Empirical absorption correction (psi scan) was applied. The structure was solved by the direct method and refined by the Full-matrix least-squares on F-2 using the SHELXL-97 software. X-ray crystallographic study showed that the title compound contained a bi-capped alpha-Kegin-type [(SiMo10V2O40)-O-IV((VO)-O-IV)(2)](4-) polyoxoanion.
Resumo:
An unusual polyoxometalate [H2N(C2H4)(2)NH2](4)(H3O)[(PMO2Mo6V4O40)-Mo-V-V-VI-O-IV((VO)-O-IV)(2)].H2O is hydrothermally synthesized and characterized by IR, UV-VIS, elemental analyses, X-ray photoelectron spectrum, ESR, TG and Single crystal X-ray diffraction. The title compound crystallizes in the orthorhombic space group Pbca with a = 15-227(5), b = 19.491(4), c = 18.737(3) Angstrom, V = 5123(2) Angstrom(3), Z = 4, and R-1 (wR(2)) = 0.0726(0.1416). The compound contains an unusual highly reduced pseudo-Keggin type polyoxoanion and exhibits an interesting phosphorus-centered alternate arrangement of layers of molybdenum and vanadium oxides.
Resumo:
A novel compound [Cu(en)(2)](4)[(SiMo8V4O40)-O-v(V-IV O)(2)] [MoO4](2) . 5H(2)O has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Black crystals crystallize in the tetragonal. system, space group 14/m, a = b = 14.019(2) Angstrom, c = 20.341(4) Angstrom, V = 3997.9(11) Angstrom(3), Z = 2, lambda(MoKalpha) = 0.71073 Angstrom (R(F) = 0.0443 for 1819 reflections). Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range of 1.76 < theta < 24.98degrees using the omega-scan technique. The structure was solved by the direct method and refined by the full-matrix least squares on F-2 method using the SHELXL-97 software. X-ray crystallographic study showed that the title compound contained a bicapped alpha-Keggin fragment [SiMo8 (V4O40)-O-v((VO)-O-IV)(2)](4-) polyoxoanion.
Resumo:
Studies of the extraction kinetics of cerium(IV) from H2SO4-HF solutions with Cyanex 923 in n-heptane have been carried out using a constant interfacial area cell with laminar flow. The experimental hydrodynamic conditions were chosen so that the contribution of diffusion to the measured rate of reaction was minimized. The data were analyzed in terms of pseudo-first order constants. The results were compared with those of the system without HF. It was concluded that the addition of HF reduces the activation energy for the forward rate from 46.2 to 36.5 U mol(-1) while it has an opposite effect on the activation energy for the reverse process(the activation energy increased from 23.3 to 90.8 U mol(-1)). Thus, HF can accelerate the rate of cerium(IV) extraction. At the same time, the extraction rate is controlled by a mixed chemical reaction-diffusion rather than by a chemical reaction alone. A rate equation has also been obtained.