97 resultados para Flash fermentation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文从新鲜大熊猫粪便和实验室保存的沼气发酵富集物中筛选得到 4 株厌氧纤维素分解菌B5、C3、D3-2、D4-1,利用这4 株菌预处理秸秆,然后将预处理后的秸秆用本实验室保存的厌氧产氢菌来发酵进行生物产氢。同时还比较研究了:○1 用1% H2SO4、25% NH3 · H2O和12% NaOH对秸秆进行化学预处理;○2 用厌氧纤维素分解菌对秸秆进行生物预处理;○3 化学与生物组合预处理对秸秆发酵生物产氢的影响。实验结果表明:12% NaOH和生物组合预处理后的秸秆发酵产氢效果最好,其产氢量为21.04 mL g-1,是未经预处理秸秆的75 倍;最高氢气浓度为57.3%,是未经预处理秸秆的96 倍;其产氢的最适pH 为4.5 ~ 6.0,最佳底物浓度为45 ~ 55 g L-1;其发酵过程中的挥发性脂肪酸(VFAs)以乙酸和丁酸为主。 本实验筛选到的 4 株厌氧纤维素分解菌株中,B5 和D4-1 在降解纤维素的同时还具有直接以纤维素为底物产氢的功能,因此本文分别对菌株B5 和D4-1 以及二者的组合菌株B5+D4-1 直接利用秸秆为基质发酵生物产氢做了初步探索研究。结果发现:组合菌株发酵产氢的效果以及对秸秆纤维素和半纤维素的降解率要比单菌株好。菌株B5+D4-1 发酵,秸秆的产氢量为11.4 mL g-1,分别是B5 和D4-1 单菌株的1.6 倍和3.1 倍;组合菌株B5+D4-1 发酵的最大氢气浓度为31.6%,分别是B5 和D4-1 单菌株的1.3 倍和2.4 倍。在发酵过程中,组合菌株B5+D4-1 对秸秆纤维素和半纤维素的最高降解率分别为35.0%和11.8%,分别是菌株B5 的1.2 倍和1.1 倍,是菌株D4-1的1.5 倍和1.3 倍。菌株B5,D4-1 以及组合菌株B5+D4-1 发酵过程产生的挥发性脂肪酸(VFAs)均以乙酸为主。菌株B5 单独发酵过程中只检测到乙酸和丁酸,菌株D4-1 单独发酵以及组合菌株B5+D4-1 发酵过程检测到有乙醇、乙酸和丁酸。 The fermentative bio-hydrogen production by anaerobic hydrogen bacteria preserved in our laboratory from the straw which had been pretreated by four anaerobic cellulolytic decomposition strains of B5, C3, D3-2, D4-1 which were isolated and screened from giant panda’s excrement and biogas fermentation enrichments conserved in our laboratory was studied. Besides, the impact of chemical(1% H2SO4、25% NH3·H2O and 12% NaOH), biological (cellulolytic strains of B5, C3, D3-2, D4-1) and chemical-biological combination pretreatment on bio-hydrogen production from straw by fermentation was also comparatively studied. The experiments showed that the best results of bio-hydrogen production were obtained from the straw with 12% NaOH-biological combination pretreatment method, its capability of bio-hydrogen production was 21.04 mL g-1, which was 75 times higher than the straw without pretreatment; the maximum concentration of H2 was 57.3%, which was 96 times higher than the straw without pretreatment; its optimum pH range was 4.5 ~ 6.0, and its optimum range of substrate concentration was 45 ~ 55 g L-1; In the process of fermentation, the main composition of VFAs were acetate and butyrate. Among the four strains of B5, C3, D3-2, D4-1, B5 and D4-1 have the function of hydrogen-producing by cellulose used as substrate when it decompose cellulose, so the preliminary exploration and research on fermentative bio-hydrogen production by B5, D4-1 and B5+D4-1 which directly used straw as substrate was carried out. The results showed that the combination strains of B5+D4-1 was strikingly better than either B5 or D4-1 strain in the fermentative hydrogen production. The hydrogen-production capability of B5+D4-1 was 11.4 mL g-1 which was respectively 1.6 times and 3.1times higher than B5 and D4-1; the maximum hydrogen concentration of B5+D4-1 was 31.6% which was respectively 1.3 times and 2.4 times higher than B5 and D4-1. In the process of fermentation, the maximum degradation rate of cellulose and hemicellulose in straw was respectively 35.0% and 11.8% by B5+D4-1, which was 1.2 times and 1.1 times higher than B5, and was 1.5 times and 1.3 times higher than D4-1 respectively. The Volatile Fattty Acids(VFAs) generated in the process of fermentation with strains of B5, D4-1 and B5+D4-1 were all mainly acetate. Acetate and butyrate were detected in the process of fermentation with B5, ethonal, acetate and butyrate were detected in the process of fermentation with D4-1 and B5+D4-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

齐墩果酸(OA)是一个分布广泛、含量丰富的天然三萜化合物,常以皂苷元的形式广泛存在于植物中,具有多种重要生物活性。但是OA许多活性较弱,且生物利用度低,限制了其在临床上的应用。一是OA水溶性差;二是抗癌活性仍与临床应用的抗癌药物相差比较大。 真菌在微生物转化中具有种类多、培养条件比较简单等特点,为了寻找到具有转化OA能力的菌株,采取一步发酵的方法,在18株实验室保藏真菌菌株中筛选到5株目的菌株,TLC分析显示有转化效果。 随后采用二步发酵的方法作为复筛,验证5株菌株转化能力,波谱分析结果表明5株菌株对OA确实有转化作用。 选择5株菌种中代号1F-2 2菌株作为放大实验菌株,分离转化产物,得到OA衍生物108(相对分子量414m/z)和1010(相对分子量340 m/z),分离出的产物用于活性检测。寻找到产物108的RP-HPLC分离条件,质谱得出二者相对分子质量。 为验证OA转化产物抗肿瘤活性,首次研究了OA对卵巢癌细胞株IGROV1和人乳腺癌细胞株MDA-MB-231作用,通过细胞增殖抑制实验、用MTT法检测细胞活性,结果表明齐墩果酸可降低卵巢癌细胞株IGROV1和乳腺癌细胞MDA-MB-231细胞增殖能力并呈剂量依赖性,对肿瘤细胞株的半数有效抑制浓度化IC50 分别为36.58μg/mL和38.8μg/mL (P<0.01)。OA能抑制肿瘤细胞活性,并且OA对卵巢癌细胞株IGROV1抑制活性高于乳腺癌细胞MDA-MB-231。 在此基础上,转化产物108和1010对卵巢癌细胞株IGROV1和人乳腺癌细胞株MDA-MB-231的抑制作用也进行研究,MTT实验结果表明,转化产物对两株癌细胞也有抑制活性(P<0.01)。 总之,本文工作为进一步开展齐墩果酸类化合物结构改造和抗肿瘤活性的研究奠定了基础。 Oleanolic acid (OA) is a triterpenoid widely distributed in the nature which possesses various important bioactivities. OA also serves as aglycon of many natural saponins. However, the relatively weak activities and poor bioavailability hinder its clinical use. Firstly, poor water-solubility results in worse bioavailability. Secondly, compared with clinical antitumor drug, the antitumor effect of OA has a great difference, it is worse. Many fungi have ability to transform nature products into a variety of derivatives, and transformation conditions of fungi are simple. Attempt to obtain fungi strains able to biotransform OA, we carried out the following experiments: To investigate the biotransformation 0f OA by strains supplied firstly, we used one-step fermentation method to screen the aimed strains from 18 fungus strains stored in our laboratory. On the basis of the initial screening experiments, we found 5 aimed strains. The TLC results showed that the 5 fungi strains could transform OA into other components derivatives. Then we used two-step fermentation method as secondly screening. We repeated the five strains to do the experiments, analytical data of the results proved the transformation indeed. In the followed experiments work, we chose 1F-2 2 strain as large-scale transformation fungus from the aimed fungi. We got two biotransformation products of OA by 1F-2 2, and named those derivatives 108 and 1010. We found RP-HPLC separation conditions of product 108. The two products were characterized by ESI-MS. To verify the anti-tumor activity of biotransformation products of OA, we studied the inhibition effect of oleanolic acid on the ovarian carcinomas IGROV1 and breast cancer cell line MDA-MB-231 firstly. With an assay based on a tetrazolium dye (MTT), the effects of various concentrations of oleanolic acid on ovarian carcinomas IGROV1 and breast cancer cell line MDA-MB-231 were studied. MTT method was used to measure the tumor cells viability. Compared with the control group, oleanolic acid can significantly inhibit the viability of the ovarian carcinoma cells IGROV1 and MDA-MB-231 breast cancer cell line (P<0.01), IC50 values were 36.58μg/mL or 38.8μg/mL. Oleanolic acid can inhibit the malignant tumor cells viability, and inhibitory activity of OA to ovarian carcinomas IGROV1 was higher than to breast cancer cell line MDA-MB-231. On this basis, we studied the anti-tumor activity of the two derivatives of OA [called 108 (414 m/z) and 1010(340 m/z)]. It came to the conclusion that the two derivatives also showed potent inhibitory effect on the growth of these tumor cells(P<0.01). Therefore, the results of studies will benefit the further investigating on the relationships of structures and antitumor activities of OA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

生物质燃料乙醇是一种高度清洁的交通液体燃料,是减少温室气体排放,缓解大气污染的最佳技术选择。以非粮原料生产燃料乙醇可以在进行能源生产的同时保证粮食安全,有利于产业的可持续发展。在众多的非粮原料中,甘薯是我国开发潜力最大的生物质能源作物之一。我国占世界甘薯种植总面积和产量的90%。同时,甘薯的单位面积燃料乙醇产量远大于玉米和小麦。其成本是目前酒精中最低廉的,因此利用甘薯生产乙醇是发展生物质燃料乙醇的首要选择。目前采用薯类全原料主要采用分批发酵生产乙醇,其技术水平低,发酵强度低,一般在0.7-2.5g/(L•h),乙醇浓度低,甘薯发酵乙醇为6-8%(v/v),能耗高,环境负荷大,污染严重。针对上述问题,本文从菌株选育、原料预处理、中试放大、残糖成分分析等方面进行研究。 为了研究乙醇发酵生产规模扩大过程中,大型发酵罐底部高压条件下,CO2对酵母乙醇发酵的影响,我们通过CO2 加压的方法进行模拟试验,研究结果表明,发酵时间随压强的升高而逐渐延长,高压CO2 对乙醇发酵效率影响不大,在0.3 MPa 以下时,发酵效率均可达到90%以上。高压CO2 对发酵的抑制作用是高压和CO2 这两个因素联合作用的结果。高压CO2 条件下,酵母胞外酶和胞内重要酶类的酶活均表现出特征性。0.2 MPa 下,酶活性的变化趋势和0.1 MPa 条件下的较为一致。而0.3 MPa 下的酶活变化趋势与0.4 MPa 下的酶活更为接近。通过全基因表达分析发现在CO2 压力为0.3 MPa 下,乙醇发酵途径中多个基因表达量下调,同时海藻糖合成酶和热激蛋白基因表达量上调。 筛选耐高温的乙醇酵母菌株能够解决糖化温度和发酵温度不协调的矛盾,实现真正意义上的边糖化边发酵。高温发酵还能够降低发酵时的冷却成本,实现乙醇的周年生产。本研究筛选出一株高温发酵菌株Y-H1,进而我们对该菌株的胞外酶和胞内乙醇代谢重要酶类的酶活性进行了分析。结果表明Y-H1 能够在40 ℃条件下正常进行乙醇发酵,发酵33h,最终乙醇浓度达到10.7%(w/w),发酵效率达到90%以上。同时发酵液最终pH 在3.5 左右,显示菌株具有一定的耐酸性能力。同时观察到40 ℃下,菌株的胞外酶和胞内乙醇代谢重要酶类的酶活性发生了变化,乙醇发酵途径中关键酶基因表达下调,而海藻糖合成酶与热激蛋白基因表达量上调,这些结果为进一步研究酵母菌耐热调控机理提供了依据。 糖蜜是一种大规模工业生产乙醇的理想原料,本研究利用选育高浓度乙醇发酵菌株结合配套的发酵稳定剂,研究了糖蜜高浓度乙醇发酵情况。结果表明采用冷酸沉淀预处理糖蜜溶液,采用分批补料的发酵方式,乙醇浓度最高达到了10.26% (w/w),发酵时间为42 h。同时观察到在糖蜜发酵中,乙醛含量与乙醇浓度存在一定的相关性。 快速乙醇发酵对于缩短乙醇生产周期、降低乙醇生产成本、减少原料腐烂损失具有重要意义。本研究诱变和筛选得到了一株快速乙醇发酵菌株10232B。在优化后的发酵条件下,采用10L 发酵罐进行分批乙醇发酵,经过18h,乙醇的最终浓度达到88.5g/L,发酵效率93.6%,平均乙醇生产速度达到4.92 g/L/h。此菌株在保持较高乙醇生产浓度的同时,拥有快速生产乙醇的能力,适合作为快速乙醇发酵生产菌种。 由于鲜甘薯具有粘度大的特点,传统液化糖化处理很难在短时间内充分糖化原料;高粘度的醪液也难以进行管道输送,容易堵塞管路;同时,也会降低后续的乙醇发酵效率。 本文采用了快速粘度分析法对鲜甘薯糊化粘度特性进行了分析,进而对预处理条件进行了研究,在最佳预处理条件下,糖化2h 后,醪液葡萄糖值最高可达99.3,粘度4.5×104 mPa.s,而采用传统糖化工艺,醪液DE 值仅为85.8,粘度大于1.0×105 mPa.s。 此预处理方法也可用于快速糖化不加水的醪液。后续的乙醇发酵试验表明,通过此预处理方法获得的糖化醪液对乙醇发酵无负面影响。 在前期已实现了实验室水平的鲜甘薯燃料乙醇快速乙醇发酵基础上,进一步将发酵规模扩大到500L,在中试水平上对甘薯乙醇发酵进行了研究。结果表明在500L 中试规模,采用边糖化边发酵(SSF)工艺,在料液比为3∶1,发酵醪液最高粘度为6×104mPa.s 条件下,发酵37h,乙醇浓度达到了12.7%(v/v),发酵效率91%,发酵强度为2.7 g/(L•h)。与目前国内的薯类乙醇发酵生产技术水平具有明显的优越性。 为研究甘薯、木薯乙醇发酵中残糖的组成,采用了高效液相色谱—蒸发光散射检测法,对乙醇发酵残糖进行了分析。结果表明,甘薯、木薯乙醇发酵残糖均为寡聚糖,主要由葡萄糖、木糖、半乳糖、阿拉伯糖和甘露糖构成。随着发酵时间延长,寡聚糖中的葡萄糖、半乳糖、甘露糖可被缓慢的水解释放。提高糖化酶量仅在一定程度上降低残糖,过量的糖化酶反而会导致残糖增加。同时发现3, 5-二硝基水杨酸法不能准确测定甘薯、木薯乙醇发酵中的残总糖含量。进一步筛选了两株残糖降解菌株,对甘薯乙醇发酵残糖的降解利用率均达到了40%以上,而且还能显著降低发酵醪液粘度。经形态学和rRNA ITS 序列分析,确定这两株菌分别属于为木霉属和曲霉属黑曲霉组。 通过对以甘薯原料为代表的非粮原料发酵技术研究开发,以期形成乙醇转化率高,能耗低,生产效率高、季节适应性好,原料适应性广,经济性强,符合清洁生产机制的燃料乙醇高效转化技术,为具有我国特色的燃料乙醇发展模式提供技术支持。 Sweet potato is one of the major feedstock for the fuel ethanol production in China. The planting area and the yield in China take 90% of the world. Sweet potato is an efficient kind of energy crops. The energy outcome per area is higher than corn or wheat. And the manufacture cost of ethanol is the lowest, compared with corn and wheat. So sweet potato is the favorable crop for the bioethanol production in China. However, the low-level fermentation technology restricts the development of ethanol production by sweet potato, including slow ethanol production rate, low ethanol concentration and high energy cost. To solve these problems, we conducted research on the strain breeding, pretreatment, pilot fermentation test and residual saccharides analysis. To study the impact of hyperbaric condition at bottom of the large fermentor on yeast fermentation, high pressure carbon dioxide (CO2) was adopted to simulate the situation. The results showed that the fermentation was prolonged with the increasing pressure. The pressure of CO2 had little impact on the ethanol yield which could reach 90% under the pressure below 0.3 MPa. The inhibition was combined by the high pressure and CO2. Under the high CO2 pressure, the extracellular and important intracellular enzyme activities were different from those under normal state. The changes under 0.1 MPa and 0.2 MPa were similar. The changes under 0.3 MPa were closer to those under 0.4 MPa. The application of thermotolerance yeast could solve the problem of the inconsistent temperature between fermentation and saccharificaton and fulfill the real simultaneous saccharification and fermentation. And it could reduce the cooling cost. A thermotolerance strain Y-H1 was isolated in our research. It gave high ethanol concentration of 10.7%(w/w)at 40 ℃ for 33 h. The ethanol yield efficiency was over 90%. At 40 ℃, the extracellular and important intracellular enzyme activities of Y-H1 showed the difference with normal state, which may indicate its physiological changes at the high temperature. Molasses is another feedstock for industrial ethanol production. By our ethanol-tolerance strain and the regulation reagents, the fermentation with high ethanol concentration was investigated. In fed-batch mode combined with cold acid deposition, the highest ethanol concentration was 10.26% (w/w) for 42h. The aldehyde concentration in fermentation was found to be related to ethanol concentration. The development of a rapid ethanol fermentation strain of Zymomonas mobilis is essential for reducing the cost of ethanol production and for the timely utilization of fresh material that is easily decayed in the Chinese bioethanol industry. A mutant Z. mobilis strain, 10232B, was generated by UV mutagenesis. Under these optimized conditions, fermentation of the mutant Z. mobilis 10232B strain was completed in just 18 h with a high ethanol production rate, at an average of 4.92 gL-1h-1 per batch. The final maximum ethanol concentration was 88.5 gL-1, with an ethanol yield efficiency of 93.6%. This result illustrated the potential use of the mutant Z. mobilis 10232B strain in rapid ethanol fermentation in order to help reduce the cost of industrial ethanol production. As fresh sweet potato syrup shows high viscosity, it is hard to be fully converted to glucose by enzymes in the traditional saccharification process. The high-viscosity syrup is difficult to be transmitted in pipes, which may be easily blocked. Meanwhile it could also reduce the later ethanol fermentation efficiency. To solve these problems, effects of the pretreatment conditions were investigated. The highest dextrose equivalent value of 99.3 and the lowest viscosity of 4.5×104 mPa.s were obtained by the most favorable pretreatment conditions, while those of 85.8 and over 1.0×105 mPa.s was produced by traditional treatment conditions. The pretreatment could also be applied on the material syrup without adding water. The later experiments showed that the pretreated syrup had no negative effect on the ethanol fermentation and exhibited lower viscosity. The fuel ethanol rapid production from fresh sweet potato was enlarged in the 500L pilot scale after its fulfillment on the laboratory level. The optimal ratio of material to water was 3 to 1 in 500L fermentor. With low-temperature-cooking (85 ℃) using SSF, the Saccharomyces cerevisiae was able to produce ethanol 97.44 g/kg for 37h, which reached 92% of theoretical yield. The average ethanol production rate was 4.06 g/kg/h. And the maximum viscosity of syrup reached 6×104mPa.s. The results showed its superiority over current industrial ethanol fermentation. The compositions of the residual saccharides in the ethanol fermentation by sweet potato and cassava were analyzed by high performance liquid chromatography coupled with evaporative light-scattering detector. The results showed that all the residual saccharides were oligosaccharides, mainly composed of glucose, xylose, galactose, arabinose and mannose. The glucose, galactose and mannose could be slowly hydrolyzed from oligosaccharides in syrup during a long period. To increase the glucoamylase dosage could lower the residual saccharides to a certain extent. However, excess glucoamylase dosage led to more residual saccharides. And the method of 3, 5-dinitrosalicylic acid could not accurately quantify the residual total saccharides content. Two residual saccharides degrading strains were isolated, which could utilize 40% of total residual saccharide and lower the syrup viscosity. With the analysis of morphology and internal transcribed spacer sequence, they were finally identified as species of Trichoderma and Aspergillus niger.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

木质纤维素原料种类多、分布广、数量巨大,通过燃料乙醇生产技术、厌氧沼气发酵技术将其转化成乙醇、沼气等二次能源,一定程度上可以缓解化石能源的不断消耗所带来的能源危机,也解决了农林废弃物引起的环境污染问题。其中以木质纤维素原料生产燃料乙醇,还可以避免以淀粉类和糖类原料生产燃料乙醇时带来的“与人争粮”等一系列问题。因此具有重要的经济效益、环境效益和社会效益。 然而,木质纤维素原料结构致密,木质素包裹在纤维素、半纤维素外围,导致其很难被降解利用,必须进行适当的预处理,去除木质素,打破原有的致密结构,利于原料的后续利用。因此,预处理成为木质纤维素原料能源化利用的关键。而目前预处理环节的费用过于昂贵,于是寻找一种高效、低成本的预处理方法是当今研究的热点。 本论文采用组合白腐真菌对木质纤维素原料进行生物预处理研究,与其他物理化学法相比,该法有着专一性较强、反应温和、不造成环境污染、成本低等优势。白腐真菌主要通过分泌木质素降解酶对木质素进行降解,从而破坏原料的致密结构,提高后续利用效率。所以木质素降解酶酶活的高低是影响原料预处理效果的一个关键因素。于是本论文首先通过将白腐真菌进行组合的方式提高木质素降解酶(漆酶,Lac)酶活;接着对组合菌的菌株相互作用机理进行研究,阐明组合菌Lac 酶活提高的原因,为菌株组合提高Lac 酶活这种方法的应用提供理论依据,同时也为后续组合白腐真菌预处理木质纤维素原料提供指导;进一步采用固态发酵和木质素降解酶两种方式对木质纤维素原料进行预处理研究,最大化去除木质素成分,破坏原料的致密结构;最终对预处理后原料的酶解糖化进行初步研究,为原料后续的能源化应用奠定基础。具体研究结果如下: (1) 以实验室保存的三株主要分泌Lac 的白腐真菌为出发菌株,筛选得到一组Lac 酶活明显提高的组合菌55+m-6,其中菌株55 为Trametes trogii sp.,m-6 为Trametes versicolor sp.,组合后Lac 酶活较单菌株分别提高24.13倍和4.07 倍。组合菌的最适产酶条件为pH 6.5、C/N 16:1、Tween 80 添加量为0.01%,在该条件下组合菌的Lac 酶活峰值比未优化时提高4.11倍。 (2) 对组合菌55+m-6 菌株间相互作用机理进行研究,发现菌株之间不存在抑制作用;平板培养时,菌丝交界处Lac 酶活最高并分泌棕色色素;液体培养时,菌株m-6 对组合后Lac 酶活的提高起着更为重要的作用:菌株m-6的菌块、过滤灭菌胞外物以及高温灭菌胞外物均能明显刺激菌株55 的Lac产生;菌株55、m-6 进行组合后,同工酶种类未发生增减,但有三种Lac同工酶浓度有所提高;对菌株胞外物进行薄层层析和质谱分析,结果表明组合前后菌株胞外物中各物质在浓度上存在较大的变化。推测组合菌Lac酶活的明显提高,主要是由于菌株m-6 胞外物中的一些物质能刺激菌株55 分泌大量Lac 进行代谢,且这些刺激物质并非菌株m-6 特有,菌株55自身也可以代谢生成,但是适当的浓度才能刺激Lac 的大量分泌。 (3) 将组合菌55+m-6 用于固态发酵预处理木质纤维素原料,发现其对玉米秆的降解程度最大,在粉碎度40 目、含水率65%的最优处理条件下,处理至第15d,秸秆失重率为41.24%,其中木质素、纤维素、半纤维素均有降解,且Lac 和纤维素酶(CMC)酶活以及还原糖量均达到峰值。 (4) 对玉米秆进行木质素降解酶预处理,发现Lac/1-羟基苯并三唑(HBT)系统对玉米秆木质素的降解效果最好,在最优处理条件时,即HBT 用量0.2%、处理时间1d、Lac 用量50U/g,木质素降解率可达12.60%。预处理后玉米秆的致密结构被破坏,比表面积增大,利于后续酶与纤维素、半纤维素成分的结合。 (5) 对预处理后的玉米秆进行酶解糖化,其中组合菌固态发酵预处理后玉米秆的糖化率比对照高4.33 倍;Lac/HBT 系统预处理后玉米秆的糖化率比对照高2.99%,糖化液中主要含有木糖、葡萄糖两种单糖。 There are many kinds and large quantities of lignocellulosic biomass widely distributed on the earth. They can be converted into secondary energy such as fuel ethanol, biogas, et al., which can relieve the energy crisis caused by consumption of fossil energy resources and solve the problem of environmental pollution caused by agriculture and forestry waste. Meanwhile, the production of fuel ethanol from lignocellulosic biomass can ensure food supply to human kind instead of starch- and sugar-containing raw materials. So the energy conversion of lignocellulosic biomass contributes considerable economic, environment and social benefits. However, lignocellulosic biomass has the compact structure, in which lignin surrounds cellulose and hemicellulose, so it must be pretreated before energy usage and pretreatment is one of the most critical steps in the energy conversion of lignocellulosic biomass. At present, the cost of pretreatment is too expensive, so looking for an efficient and low-cost pre-treatment method is one of recent research hot spots. In this research, combined white rot fungi pretreatment method was used, which had some advantages in low cost, high specificity, mild reacting conditions and friendly environmental effects compared with the other physical and chemical methods. White rot fungi secrete lignin degrading enzymes to degrade the content of lignin and damage the contact structure of lignocellulosic biomass, so the activity of the lignin degrading enzymes is the key factor to the degradation effect of raw materials. Firstly, the combined fungi with high laccase activity were screened; secondly, the interaction mechanism between strains was studied, and the cause of higher laccase activity after strains combination was also preliminary clarified; under the guidance of the mechanism, lignocellulosic biomass was pretreated by the combined fungi; lastly, the enzymatic hydrolysis of pretreated lignocellulosic biomass was also preliminary studied; all of the researches could lay the foundation for the energy application of lignocellulosic biomass. The specific research results were as follows: (1) The combined fungi 55+m-6 with significant higher laccase activity were screened from the three white rot fungi stored in our lab which mainly secreted laccase. Strain 55 and strain m-6 were Trametes trogii sp. and Trametes versicolor sp., respectively. The laccase activity of combined fungi was 24.13 and 4.07-fold than strain 55 and strain m-6, respectively. The optimized condition for laccase production of the combined fungi in liquid medium was pH 6.5, C/N 16:1 and Tween 80 0.01%. In this optimized condition, the laccase activity of combined fungi was 4.11-fold higher comparing with which in non-optimized medium. (2) The interaction mechanism between strain 55 and strain m-6 was further studied, and no inhibition effect was observed. Brown pigment was secreted on the junction of the two strains on the plate, where the highest laccase activity was detected. Strain m-6 was much important to boost laccase activity of combined fungi in liquid medium, and strain 55 was stimulated by fungal plug, filter sterilized extracellular substances and high temperature sterilized extracellular substances of strain m-6 to produce laccase. The types of laccase isozymes did not change after combining strain 55 and strain m-6, but the concentrations of three types increased. Mass Spectrometry and TLC analysis of extracellular substances of each strain showed that concentration of some substances considerably changed after strains were combined. It was supposed that the cause of higher laccase activity of combined fungi was mainly due to some extracellular substances of strain m-6 with the appropriate concentration which stimulated laccase secretion of strain 55 and generated not only by strain m-6 but also by strain 55. (3) Combined fungi 55+m-6 were used to lignocellulosic biomass pretreatment with the type of solid-state fermentation. The highest degree of degradation of corn straw was obtained, including the rate of weight loss was 41.24% and the lignin, cellulose and hemicellulose were degraded partially under the optimized condition of 40 mesh, 65% water content on 15th day. Laccase, CMCase activities and content of reducing sugar reached the maximum value on that day. (4) Lignin degrading enzymes from combined fungi 55+m-6 were used for corn straw pretreatment. The most remarkable degradation of lignin in corn straw with Lac/1-hydroxybenzotriazole (HBT) system was observed, and the 12.60% lignin degradation was obtained under the optimized condition of 0.2% HBT, 50 U/g laccase for 1 d. After pretreated by Lac/HBT, the tight structure of corn straw was demolished and specific surface area increased, which had advantages for accessible of enzyme to cellulose and hemicellulose. (5) The corn straws pretreated by combined fungi 55+m-6 with the type of solid-state fermentation and Lac/HBT were used for enzymatic hydrolysis, and the saccharification rates of each pretreatment type were 4.33 times and 2.99% higher than CK, respectively. The enzymatic hydrolysis liquid of corn straw pretreated by Lac/HBT mainly contained xylose and glucose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文从成都龙泉垃圾填埋场和宜宾造纸厂分离到耐酸性能优良的高温产甲烷菌RY3和中温产甲烷菌SH4,并将其与实验室现有的利用不同底物的产甲烷菌配伍组合成了复合菌剂。采用活性污泥作为固体附着物,研制出了固体产甲烷菌复合菌剂。 菌株RY3的pH耐受范围为5.5~10.5,最适生长pH 6.0~8.0。菌株RY3为革兰氏阳性,长杆状,多数单生,不运动;菌落浅黄色,形状近圆形;利用H2+CO2或甲酸盐作为唯一碳源生长,不利用乙酸盐,对氯霉素非常敏感。该菌最适生长温度为55℃~65℃,最适NaCl浓度为0~2%。根据形态和生理生化特性及16S rDNA序列分析将其初步定为热自养甲烷热杆菌(Methanothermobacter thermautotrophicus)。添加RY3菌液与仅添加厌氧污泥作为接种物相比一周内可使达到最大产甲烷速率所需时间缩短三分之二,甲烷总产量提高约1.8倍。菌株SH4的生长pH范围5.5~9.5,其对酸碱具有良好的适应性,培养3天后,在初始pH值为6.0~8.0的培养基中甲烷产量相差不大,且基本达到最大产量。SH4革兰氏染色阳性,短杆状,多数单生,不运动;菌落近圆形,微黄;利用H2+CO2或甲酸盐作为唯一碳源生长,不利用乙酸盐,对氯霉素非常敏感。SH4最适生长pH 为7.0,最适生长温度为35℃,最适NaCl浓度为0~1.5%。实验表明,添加SH4菌液与仅添加厌氧污泥作为接种物相比可使产甲烷启动时间缩短三分之一,甲烷总产量亦有大幅提高。从形态和生理生化特征以及16S rDNA序列分析表明SH4为嗜树木甲烷短杆菌(Methanobrevibacter arboriphilus)。 以活性污泥为附着物,与培养基和菌种经搅拌后厌氧发酵可得产甲烷菌固体复合菌剂。固体复合菌剂的pH耐受范围为5.5~9.5,温度耐受范围为15℃~65℃,表明其对环境的适应性较强。以猪粪为底物进行厌氧发酵,接种复合菌剂进行试验,以接种实验室长期富集的产甲烷厌氧污泥作为对照,在20℃时,发酵甲烷浓度与对照基本一致,但每日产气量优于对照,第15天时接种复合菌剂的发酵瓶每日产气量是对照的1.59倍;50℃时达到最大甲烷含量所需时间比对照缩短三分之二,三周内总产气量约为对照的2.7倍,甲烷总产量约为2.8倍。以不加接种物为对照,接种复合菌剂20℃时发酵甲烷含量达到50%约需2周,对照2周内甲烷含量最高仅为4.3%;50℃时接种复合菌剂发酵仅需约1周甲烷含量便可达50%,对照则至少需要2周。 In this paper, high-temperature Methanogen RY3 and middle-temperature SH4 were isolated from Chengdu Longquan refuse landfill and Yibin paper mill. They could be used to make compound inoculum that producing methane with the existing Methanogens utilized different substrate. With using anaerobic activated sludge be solid fixture, the process had been designed to produce solid compound inoculum. Strain RY3 possessed excellent capacity of acid and alkali-tolerant. The pH-tolerant scale of RY3 was 5.5~10.5 and its optimum pH value for growth was 6.0~8.0. RY3 was G+, long-rod shape, monothetic and nonmotile, the colony was pale yellow with suborbicular-shape. Formate or H2+CO2 but not acetate was utilized by RY3 as sole C-source, and it was very sensitive to chloramphenicol. Besides, strain RY3 grew fastest at 55℃~65 and 0℃~2% NaCl. Characteristics of modality and physiology with sequence analysis of the 16s rDNA gene of strain RY3 preliminarily showed that it was Methanothermobacter thermautotrophicus. The experiments indicated that the time which began to produce methane with the highest velocity could be shortened two third by adding RY3 in one week, and the total methane production also was 1.8 times than before. Strain SH4 possessed wide scale of growing pH(5.5~9.5)and excellent ability of acclimatizing itself to acid-alkali. The methane production had no apparent difference among those cultivated in different initial pH(6.0~8.0)after three days and equaled to the maximum production basically. Cells of SH4 were G+, short-rod sharp, monothetic and nonmotile. The colony was pale yellow with suborbicular-shape. Formate or H2+CO2 but not acetate was utilized by SH4 as sole C-source, and it was very sensitive to chloramphenicol. Besides, it grew fastest at pH 7.0,55 ℃~65 and 0℃~2% NaCl concentration. The experiment indicated the time that began to produce methane could be shortening one third by adding SH4. And the total methane production also rose apparently. Characteristic of modality and physiology with sequence analysis of the 16S rDNA gene of strain SH4 demonstrated it was Methanobrevibacter arboriphilus. The activated sludge was utilized as fixture, mixed with culture medium and inocolum, that the solid compound inoculum could be produced by anaerobic fermentation. The compound inoculum could grow between pH 5.5~9.5, 15℃~65. It demonstrated the compound inoculum ha℃ve great ability of adapting to circumstance. In the experiment that making pig manure be substrate and taking the anaerobic sludge producing methane that cultured in long term in laboratory to be comparison, the concentration of methane in fermentation added compound inoculum almost equal to the comparison at 20℃, but the volume of gas production could be a little higher. The gas production everyday inoculated compound inoculum was 1.59 times to comparison. The time that the concentration of methane to maximum could be shortening by two third by adding compound inoculum, and the total gas production was 2.7 times to comprison while the total methane production was 2.8 times. If take the no inoculum be the comprasion, anaerobic fermentation added compound inoculum made the concentration of methane to 50% in 2 weeks but the comparison only to 4.3% at 20℃. The time that the concentration of methane to 50% by adding compound inoculum only need 1 week, but the comparison need 2 weeks at 50℃.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文筛选出一株能利用木糖产乙醇的丝状真菌Z7,对其利用木糖和半纤维素水解产物产乙醇的发酵条件进行了研究,并对Z7 利用玉米芯产木聚糖酶的条件进行了优化。全文分为三部分: 第一部分:目标微生物筛选、纯化及系统发育分析。以木糖为唯一碳源,采用梯度稀释和平板化线法从高温、中温酒曲中分离到16 株能利用木糖良好生长的丝状真菌;通过发酵试验复筛,获得一株能产乙醇的丝状真菌Z7;综合形态学和ITS 序列分析,初步鉴定为Aspergillus flavus。 第二部分:Z7 的乙醇发酵条件研究。以木糖为碳源,通过单因素试验确定最佳氮源和发酵温度;通过正交试验及SPSS 软件分析得到了不同N、P、K 成分对乙醇、残糖和菌体干重的影响。获得最佳的发酵条件为:(g/L)木糖50,尿素1, NH4NO3 1, K2HPO4 2 , KCl 0.5 , MgSO4.7H2O 0.5 , NaNO3 1 , pH 自然,培养温度33 ℃。以玉米芯半纤维素稀酸水解液为底物进行乙醇发酵,根据稀酸水解的单糖释放量和乙醇产量,确定115 ℃,1 h 为最佳玉米芯预处理条件;结合最佳发酵条件,添加1 g/L 的吐温20 能获得最大的乙醇浓度8.31 g/L。因此,Aspergillus flavus Z7 能利用半纤维素水解产物产乙醇,其中木糖的利用率80%以上。 第三部分:Z7 利用玉米芯产木聚糖酶条件优化。Aspergillus flavus Z7 在具有产乙醇能力的同时还具有产木聚糖酶的能力。本文通过单因素和正交试验得到最佳产酶培养基组分为:(g/L)玉米芯20,尿素2, 酵母膏2.5, K2HPO4 5,NaNO31, MgSO4.7H2O 1。单因素试验表明,用纱布代替塑料布密封摇瓶封口能显著提高产酶量;Z7 在碱性条件下具有更强的产酶性能。在最优条件下发酵,能产生最大木聚糖酶活122.23IU/mL。通过薄层分析,验证了Z7 产生的木聚糖酶具有水解木聚糖生成木糖及木寡糖的能力。 A strain of filamentous fungus which can produce ethanol by using the xylose was isolated in this research. The ethanol fermention conditions from xylose and dilute-acid hydrolyzate of the corn core were studied. The conditions of xylanase production by Z7 were also optimized. The paper involved three parts. Part1: Isolation, purification and phylogenetic analysis of the microbe. By using xylose as the single carbon source and the pla te streaking method, several filamentous fungi were isolated from the wine starter; through the fermentation test, a filamentous fungus Z7 which can produce ethanol was further recognized; furthermore, according to the morphologic observation and ITS seque nces analysis, Z7 was identified as Aspergillus flavus at the first step. Part2: Research on the condition of ethanol fermentation by Z7. By single factor experiment, the optional nitrogen resource and temperature of the fermentation were fixed; meanwhile, through the orthogonal array tests and the analysis of statistic software SPSS, the optional component of the culture medium and the fermentation condition were organized as follows: (g/L) xylose 50, urea 1, NH4NO3 1, K2HPO4 2, KCl 0.5 , MgSO4.7H2O 0.5, NaNO31, pH nature, temperature 33℃. Based on these optimal parameters, the fermentation of dilute-acid hydrolyzate of the corn core was carried on by Z7. According to the quantities of released sugar monomers and content of the ethanol, 115℃ in 1h is the best pretreatment condition; the maximal ethanol content can be obtained when 1g/L Tween 20 was added to. Therefore, the filamentous fungus Aspergillus flavus can use the hydrolysate of hemicellulose to produce ethanol, and the rate of xylose utilization was over 80%. Part3: Optimization of Z7’s xylanase producing condition from corn core. Aspergillus flavus Z7, which can utilize xylose or the hydrolysate of hemicellulose to produce ethanol, also had the ability of xylanase production. The optional component of the culture medium were fixed by the single factor experiment and the orthogonal array tests, and they were organized as follows: (g/L) corn core 20, Urea 2, Yeast extract 2.5, K2HPO4 5, NaNO31, MgSO4.7H2O 1; it was testified by the single factor experiment that sealing the shaking flasks with pledget other than plastic paper can obviously increase the xylanase activity; moreover, Z7 showed better xylanase production ability when in the alkali environment. Under the optional fermentation condition, the maximal xylanase activity 122.23IU/mL was proved. Through the analysis of thin- layer chromatography (TLC), the ability of xylanase from Z7, which can hydrolyze xylan to xylose monomer and oligomer, was vividly displayed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

活性污泥法是目前世界上普遍应用的污水生物处理工艺,其在运行过程中产生大量的剩余污泥。由于剩余污泥处理费用巨大及污泥最终处置对环境具有潜在危害问题,污泥的处理和处置已经成为水处理领域关注的焦点。本文利用实验室筛选的溶胞菌群,在好氧消化的同时对污泥进行前处理,促进剩余污泥的破解与溶胞,再通过两相厌氧处理对污泥进行进一步消化,以研究投加溶胞菌对剩余污泥消化的影响。 本研究中溶胞菌污泥减量化技术分为两个部分,第一,污泥在溶胞菌作用下的好氧消化与污泥传统好氧消化的对比研究,利用取自成都三瓦窑污水处理厂剩余污泥,向好氧污泥消化反应器中投加溶胞菌,检测各项污泥指标,并通过同传统好氧污泥消化对比,以研究溶胞菌对污泥好氧消化的影响。第二, 经过溶胞菌处理后好氧消化的剩余污泥进行两相厌氧处理研究。通过建立好氧溶胞联合两相厌氧消化系统的来处理剩余污泥,并与相同条件运行的两相厌氧消化系统做对比,检测运行过程中系统中物质成分变化,研究了其处理能力和运行稳定性,探索了两相厌氧消化系统中的发酵类型差别,验证了好氧溶胞对剩余污泥的破解效果。 研究结果表明:污泥在溶胞菌作用下的好氧消化效果和消化效率均优于传统好氧消化。在溶胞菌群存在的情况下,剩余污泥的TSS和VSS去除率达到40%和53%,远高于传统好氧消化的12%和20%。污泥经过溶胞及好氧消化后,TCOD去除率达到54.4%。经过溶胞菌处理后的剩余污泥再进入两相厌氧处理系统,进入厌氧处理系统的剩余污泥的VSS/TSS比值约为0.62。在两相厌氧处理水力停留时间(HRT)为8d时,溶胞处理污泥厌氧消化后VSS去除率达到55.17%,对照组两相厌氧系统的VSS去除率平均值为18.53%。经过溶胞处理的两相厌氧系统的污泥减量了能力远高于对照组。两相厌氧系统的pH值和碱度说明系统运行较为稳定。产酸相的有机酸中乙酸含量高于丙酸和丁酸,说明发酵末端产物以乙酸为主。在20天的试验周期内,污泥溶胞处理后、两相厌氧系统产甲烷相产气量累积产气量为1.2L,对照组只有375ml。气体中甲烷含量都在55%左右。该研究结果表明,好氧溶胞对污泥有破解能力,溶胞处理对两相厌氧中产酸相水解污泥细胞有明显的促进作用,提高了产酸相的水解酸化能力和效率。该研究对于利用生物溶胞途径提高污泥消化效率具有重要意义。 The actived sludge process has been used more and more extensively, but the procedure will lead to a large quantity of excess sludge. The treatment of Excess activated sludge has becomes a focuses not only for it is a seriously negative effect on environment but also for the costly disposal comes subsequently. The cell lysing bacterium was keeped in our lab to joined in the digestion of the excess activated sludge which was carrying at the same time with pre-processing of sludge to investigated the influence of cell lysing bacterium on excess sludge. There are two part in the method of cell lysing bacterium digesting sludge technology, the first, comparison of excess sludge digestion between anaerobic Cell-lysing Pretreatment and Conventional Aerobic Process. The sludge which was collected from San Wanyao disposal plant in Chengdu was thrown into the aerobic process system with cell-lysing bacterium, then, the indexes were detected to compare the difference between the cell-lysing bacterium in aerobic process and the traditional method to determine the influence of cell-lysing bacterium on aerobic process ; The second, the research on the sludge which was pro-treated with cell-lysing and aerobic digestion in the diphase of anaerobic digestion system. The system of cell-lysing combined with diphase of anaerobic digesting was created to compare to the diphase of anaerobic digested system, the changes of mass constituent was detected to study the ability and steady of disposal. Moreover, the research explored the difference among the types of fermentation. The efficacious of aerobic process was been proved. The result shows that the digesting rate of aerobic process with cell-lysing bacterium was higher than the traditional process. The ratio of sludge is reach to 40%~53%, which was far more effectively than the traditional process rate of 12%~20%. The TCOD of sludge which was treated with cell lysing bacterium and Aerobic Process is reach to 54.4%. Then, the sludge was thrown into the diphase of anaerobic digesting system. VSS/TSS of sludge is 0.62, HRT is 6d, the reduction of VSS is reach to 40.8%. The pH and alkalinity indicate the steady running of the diphase anaerobic digest system. In the acerbity phasing, the content of acetic acid was more than butanoic acid and propanoic acid in organic acid, it is demonstrated that the main composition of final production of fermentation was Acetic Acid. During the 20d of experiment, methylhydride phasing of diphase anaerobic digest system produced 1.2L methylhydride, however, there is only 375ml in CK, the content of methylhydride in all gas phase was around the rate of 55%. The average ratio of VSS was 18.53% in CK diphase anaerobic digest system which was far more unavailable than the mass sludge rate of 55.17%. Results demonstrated that aerobic cell-lysing digested the sludge, the treat of cell-lysing could obviously promoted the hydrolyzeing of sludge cell in the acerbity phasing, which improved the ability and rate of hydrolization and acidification. This study is significant in inhenceing the rate of sludge digestion in the method of cell-lysing bacterium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

介绍了TMS320VC5402并行Bootloader的原理。为实现脱机运行,充分利用其片内掩膜ROM带有一个引导装载程序Bootloader,实现对用户程序的并行引导装载。同时采用CPLD编程技术提供了一种实用的扩展存储器设计方案。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

分析了将程序代码写入FLASH的两种方法,并在基于TITMS320C6713的DSP系统设计中,以28F128J3A为例,讨论了用FlashBurn软件和FBTC目标组件程序烧写FLASH的具体实现过程,给出了主要程序代码。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文介绍了德州仪器公司新一代16位Flash型MSP430F149系列单片机的结构、特性和功能,阐述了基于该单片机控制系统的硬件组成和软件设计,并给出了该控制器在SDRAM控制系统中的应用,具有功耗低、功能齐全、人机界面友好等优点。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

介绍了德州仪器公司新一代16位Flash型MSP430F149系列单片机的结构、特性和功能,给出了基于该单片机控制系统的硬件组成和软件设计,具有功能强、结构简单、可靠性高、抗干扰能力强、不需扩展外围器件等特点,根据不同的需求可以应用于多种温度测控系统中。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

介绍了美国Texas Instruments新一代16位Flash型MSP430F149系列微控制器的结构、特性和功能,阐述了基于该控制器的烤箱控制系统的硬件组成和软件架构,具有功能强、结构简单、可靠性高、抗干扰能力强、不需扩展外围器件等特点,满足了烤箱控制系统中对温度的测控要求。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

文章介绍了美国TI公司新一代16位Flash型MSP430F149系列单片机的结构、特性和功能,并给出了该单片机与上位机(PC)利用串行口进行通讯的实例,详细介绍了如何利用VC++6.0进行串口通讯程序的编制,重点介绍了Windows API实现异步通讯的方法。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MSC1211是用于数据获取的片上系统微控制器,集成了嵌入式的24位高精度∑-△A/D转换器和16位D/A转换器。主要介绍内核兼容8051的MSC1211微控制器的结构特点,ADC通道,DAC通道及Flash编程模式等功能。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MSC1212系列微控制器内部集成了8通道24位高精度Δ-∑ ADC、4通道16位DAC、32kB的闪速存储器以及1.2kB的静态数据存储器,还有丰富的外设资源本文主要介绍内核兼容8051的MSC1212微控制器结构特点、ADC通道、DAC通道以及Flash编程模式等功能